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ABSTRACT

One of the challenges in Artificial Intelligence (AI) is to integrate fast, automatic, and in-

tuitive System-1 thinking with slow, deliberate, and logical System-2 thinking. While deep

learning approaches excel at perception tasks for System-1, their reasoning capabilities for

System-2 are limited. Besides, deep learning approaches are usually data-hungry, hard to

make use of explicit knowledge, and struggling with interpretability and justification. This

dissertation presents three neuro-symbolic AI approaches that integrate neural networks

(NNs) with symbolic AI methods to address these issues.

The first approach presented in this dissertation is NeurASP, which combines NNs with

Answer Set Programming (ASP), a logic programming formalism. NeurASP provides an

effective way to integrate sub-symbolic and symbolic computation by treating NN outputs

as probability distributions over atomic facts in ASP. The explicit knowledge encoded in

ASP corrects mistakes in NN outputs and allows for better training with less data.

To avoid NeurASP’s bottleneck in symbolic computation, this dissertation presents a

Constraint Loss via Straight-Through Estimators (CL-STE). CL-STE provides a systematic

way to compile discrete logical constraints into a loss function over discretized NN outputs

and scales significantly better than state-of-the-art neuro-symbolic methods. This disserta-

tion also presents a finding when CL-STE was applied to Transformers. Transformers can

be extended with recurrence to enhance its power for multi-step reasoning. Such Recur-

rent Transformer can straightforwardly be applied to visual constraint reasoning problems

while successfully addressing the symbol grounding problem.

Lastly, this dissertation addresses the limitation of pre-trained Large Language Models

(LLMs) on multi-step logical reasoning problems with a dual-process neuro-symbolic rea-

soning system called LLM+ASP, where an LLM (e.g., GPT-3) serves as a highly effective

few-shot semantic parser that turns natural language sentences into a logical form that can

be used as input to ASP. LLM+ASP achieves state-of-the-art performance on several tex-
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tual reasoning benchmarks and can handle robot planning tasks that an LLM alone fails to

solve.
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Chapter 1

INTRODUCTION

System 1 and system 2 thinking (Kahneman, 2011) are two distinct modes of cognitive

processing: system 1 thinking is fast, automatic, and intuitive while system 2 thinking is

slow, deliberate, and logical. These years, system 1 thinking is widely modeled by deep

learning approaches, which excel at perception tasks such as language (Vaswani et al.,

2017; Zhang et al., 2020; Helwe et al., 2021; Li et al., 2020) and vision (Dosovitskiy et al.,

2020; Gabeur et al., 2020) with unprecedented success.

Although there has been some success to implement system 2 thinking in deep neu-

ral networks (Šourek et al., 2015; Rocktäschel and Riedel, 2017; Donadello et al., 2017;

Kazemi and Poole, 2018; Cohen et al., 2018; Palm et al., 2018; Lin et al., 2019), the rea-

soning supported in neural networks is still considered shallow (Helwe et al., 2021). For

example, while large language models (LLMs) are considered one of the most powerful

deep neural network models for various tasks (Brown et al., 2020), Nye et al. (2021) noted

that LLMs work well for system 1 intuitive thinking but not for system 2 logical think-

ing. Creswell et al. (2022) also asserted that LLMs tend to perform poorly on multi-step

logical reasoning problems. On the other hand, the latter subject has been well-studied in

the area of symbolic AI, which allows for convenient representation of knowledge (Lifs-

chitz, 2008a; Brewka et al., 2011b; Lee and Wang, 2016) and complex reasoning on both

certainty and uncertainty (Katzouris and Artikis, 2020; Verreet et al., 2022; Lee and Yang,

2023).

Symbolic AI does not incorporate high-dimensional vector space and state-of-the-art

models for perception tasks as handled in deep neural networks, which limits the applica-

bility of symbolic AI in many practical applications. On the other hand, deep neural net-
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works are usually data-hungry and hard to make use of explicit (commonsense or expert)

knowledge. They also lack explainability and justification since rich amount of information

are stored in vector space and hard to interpret.

Since the strengths of deep neural networks and symbolic AI approaches are comple-

mentary, neuro-symbolic AI (Besold et al., 2017; Mao et al., 2019; De Raedt et al., 2019;

Garcez et al., 2019) became an active research area with the hopes of a best-of-both worlds

scenario. There is no consensus on such combination and various approaches have been

proposed with different strengths.

To keep sound reasoning, some recent works in neuro-symbolic AI (Manhaeve et al.,

2018; Tsamoura et al., 2021) associate continuous parameters in neural networks (NNs)

with logic languages so that logical reasoning applied to NN outputs produces “semantic

loss” (Xu et al., 2018). However, these logic languages do not allow many flexible Knowl-

edge Representation (KR) constructs, such as recursive definition, cardinality constraints,

and weak constraints, which are supported by answer set programming (ASP) (Lifschitz,

2008b; Brewka et al., 2011a) for convenient representation of complex knowledge. To

fill in the gap, we proposed a neuro-symbolic formalism NeurASP (Yang et al., 2020),

which is a simple extension of ASP where NN outputs are treated as probability distri-

butions over atomic facts in answer set programs. NeurASP provides a convenient way

to enforce structured knowledge in NNs. We defined the probability of each “intended

model” in NeurASP using neural network outputs and proved the mathematical properties

of its gradients. We empirically showed that NeurASP can improve a neural network’s

perception result by applying symbolic reasoning in ASP and train a neural network better

with ASP rules so that a neural network not only learns from implicit correlations from

the data but also from the explicit complex semantic constraints expressed by the rules.

Remarkably, the same CNN for Sudoku (Park, 2018) trained by NeurASP achieves 66.5%

accuracy with 70k unlabeled data while the baseline only achieves 23.3% accuracy with
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fully-labeled data.

On the other hand, the symbolic computation is often the bottleneck of the above meth-

ods, limits the computation to CPUs only, and restricts their domain of usage to relatively

small scale. To allow more time-efficient learning and larger domains, we design a se-

mantic regularization method CL-STE (Yang et al., 2022), which provides a systematic

way to represent discrete logical constraints as a regularization function over discretized

NN output. To make a discretizing function meaningfully differentiable, we turn to the

idea of straight-through estimators (STE) (Courbariaux et al., 2015), which were originally

introduced to train binary neural networks — neural networks with binary weights and ac-

tivation at run-time. The main idea of STE is to use a binarization function in forward

propagation while its gradient, which is zero almost everywhere, is replaced by the gradi-

ent of a different function in backward propagation. We proved that minimizing the loss in

CL-STE method using gradient descent via a straight-through-estimator updates the neural

network’s weights in the direction that the binarized outputs satisfy the logical constraints.

Our experimental results on CL-STE show that a neural network can be trained better with

less data and fewer labels when semantic constraints are given through CL-STE. Improve-

ments of accuracy have been observed on fully-, semi-, and un-supervised learning tasks

over different types of neural networks including multi-layer perceptron (MLP), convolu-

tional neural networks (CNN), graph neural networks (GNN), and Transformers. More im-

portantly, leveraging GPUs and batch training, CL-STE method scales significantly better

on a big range of existing benchmark problems compared to state-of-the-art neuro-symbolic

methods that use heavy symbolic computation as a blackbox for computing gradients.

When applying CL-STE to Transformers, we found that Transformers can be ex-

tended with recurrence to enhance its power for multi-step reasoning and can be a vi-

able approach to learning to solve Constraint Satisfaction Problems (CSPs) in an end-to-

end manner. We designed Recurrent Transformer (Yang et al., 2023) and showed
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that it has clear advantages over state-of-the-art methods such as Graph Neural Networks

(Palm et al., 2018), SATNet (Wang et al., 2019), and some neuro-symbolic models (Yang

et al., 2020; Bai et al., 2021). With the ability of Transformer to handle visual input,

Recurrent Transformer can straightforwardly be applied to visual constraint rea-

soning problems while successfully addressing the symbol grounding problem (Chang

et al., 2020; Topan et al., 2021). We also designed a variant of CL-STE, which is restricted

to cardinality constraints only but is even more computationally efficient than CL-STE. We

showed how to leverage deductive knowledge of discrete constraints in the Transformer’s

inductive learning to achieve sample-efficient learning and semi-supervised learning for

CSPs.

Recently, LLMs have shown wide success on many downstream tasks, demonstrating

general reasoning capability on diverse tasks without being retrained. However, when we

restrict our attention to individual NLP reasoning benchmarks, they usually do not per-

form as well as state-of-the-art models despite various efforts to improve accuracy through

prompt engineering (Wei et al., 2022; Zhou et al., 2022). As training LLMs is not capa-

ble, we limited our attention to inference with LLMs and designed a dual-process neuro-

symbolic reasoning system LLM+ASP. We found that the rich semantic knowledge that

LLMs possess makes them effective general-purpose few-shot semantic parsers that can

convert linguistically variable natural language sentences into atomic facts that serve as

input to logic programs. We also found that the fully declarative nature of answer set pro-

grams (Lifschitz, 2008a; Brewka et al., 2011b) makes them a good pair with the LLM

semantic parsers, providing interpretable and explainable reasoning on the parsed result

of the LLMs using background knowledge. LLM+ASP works across multiple QA tasks

without retraining for individual tasks. It requires only a few examples to direct an LLM

(i.e., GPT-3) to tune to an individual task, along with ASP knowledge modules that can

be reused over multiple tasks. We demonstrated that this method achieves state-of-the-art
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performance on several NLP benchmarks, such as bAbI (Weston et al., 2016), StepGame

(Shi et al., 2022), CLUTRR (Sinha et al., 2019), and gSCAN (Ruis et al., 2020), and also

handles robot planning tasks that an LLM alone fails to solve.

The dissertation is organized as follows. Chapter 2 examines related works. Chap-

ter 3 presents a neuro-symbolic formalism NeurASP, which integrates neural networks

with answer set programs. Chapter 4 describes a semantic regularization method CL-STE.

Chapter 5 introduces Recurrent Transformer and a semantic loss stemmed from

CL-STE. In Chapter 6, we present LLM+ASP, which augments LLMs with symbolic rea-

soning in ASP for textual question-answering. Chapter 7 concludes.
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Chapter 2

BACKGROUND

2.1 Neuro-Symbolic Methods

Recent years have observed the rising interest in combining neural and symbolic sys-

tems (Marcus, 2018; Lamb et al., 2020; Sarker et al., 2021).

Xu et al. (2018) proposed a semantic loss function to bridge neural network (NN) out-

put and logical constraints. The method treats NN output as probabilities and computes

semantic loss as the negative logarithm of the probability to generate a state satisfying the

logical constraints. Their experiments show that the encoded semantic loss function guides

the learner to achieve state-of-the-art results on supervised and semi-supervised learning

on multi-class classification. For the efficient computation of a loss function, they encode

logical constraints in Sentential Decision Diagram (SDD) (Darwiche, 2011). However,

generating SDDs is computationally expensive for most practical tasks.

Several neuro-symbolic formalisms, such as Logic Tensor Network (Serafini and Garcez,

2016), DeepProbLog (Manhaeve et al., 2018), NeuroLog (Tsamoura et al., 2021),

DeepStochLog (Winters et al., 2021), and fuzzy logic regularizer (Roychowdhury et al.,

2021), have been proposed to enforce logical constraints in neural network training by

appending a logic layer to an existing neural network. Many of them treat the logic com-

ponent as a blackbox module (Pogancic et al., 2020) to neural networks. Since discrete

logical inference cannot be in general captured via a differentiable function, they use relax-

ation to fuzzy logic or weighted models or probability. Our work NeurASP (Yang et al.,

2020) is also of this kind where the logic layer is built upon the ASP solver CLINGO (Lifs-

chitz, 2008b; Brewka et al., 2011a; Calimeri et al., 2020). While this approach provides a
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systematic representation of constraints, the symbolic computation is often a bottleneck.

Another approach is to embed logic rules in neural networks by representing logical

connectives by mathematical operations and allowing the value of an atom to be a real num-

ber. For example, Neural Theorem Prover (NTP) (Rocktäschel and Riedel, 2017) adopts

the idea of dynamic neural module networks (Andreas et al., 2016) to embed logic conjunc-

tion and disjunction in and/or-module networks. A proof-tree like end-to-end differentiable

neural network is then constructed using Prolog’s backward chaining algorithm with these

modules. Another method that also constructs a proof-tree like neural network is Tensor-

Log (Cohen et al., 2018), which uses matrix multiplication to simulate belief propagation

that is tractable under the restriction that each rule is negation-free and can be transformed

into a polytree.

Other works train neural networks for learning satisfiability, such as (Wang et al., 2019;

Selsam et al., 2019). SATNet (Wang et al., 2019) builds on a line of research exploring SDP

relaxations as a tool for solving MAXSAT, which produces tighter approximation guaran-

tees than standard linear programming relaxation. Remarkably, their method learns to solve

Sudoku puzzles without any hand-coded knowledge. On the other hand, our experiments

show that SATNet does not extrapolate well — it does not work well for reasonably harder

Sudoku instances than those that it is trained on.

Graph Neural Networks (GNNs) (Kipf and Welling, 2017; Battaglia et al., 2018; Lamb

et al., 2020) have been widely applied. Since a graph can encode objects and relations

between objects, by learning message functions between the nodes, one can perform cer-

tain relational reasoning over the objects. For example, ExpressGNN (Zhang et al., 2019)

constructs a graph neural network to simulate variational inference in Markov Logic Net-

work. Recurrent Relational Network (RRN) (Palm et al., 2018) is a state-of-the-art GNN

for multi-step relational reasoning, achieving 96.6% accuracy for Sudoku problems. GNNs

use message-passing to propagate logical constraints in neural networks, but they do not
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have the mechanism to specify the logical constraints directly.

Neuro-Symbolic Concept Learner (Mao et al., 2019) separates between visual percep-

tion and symbolic reasoning. It shows the data-efficiency by using only 10% of the training

data and achieving the state-of-the-art 98% accuracy on CLEVR dataset. Such kind of dual-

system models achieved new state-of-the-art results in visual QA (Goldman et al., 2018;

Sampat and Lee, 2018; Yi et al., 2019; Chen et al., 2020; Ding et al., 2021). In the case

of textual problems, to improve LLMs to generate more consistent and coherent sentences,

Nye et al. (2021) suggest that generation be decomposed into two parts: candidate sentence

generation by an LLM (system 1 thinking) and a logical pruning process (system 2 think-

ing) implemented via a separate symbolic module. They show that this neuro-symbolic,

dual-process model requires fewer data to learn and achieves higher accuracy and better

generalization.

2.2 Answer Set Programs

Answer Set Programming (ASP) (Lifschitz et al., 2001), based on the stable model

semantics (Gelfond and Lifschitz, 1988), is a widely-used Knowledge Representation (KR)

framework that facilitates elegant and efficient representations for many problem domains

that require complex reasoning.

We assume a first-order signature σ that contains no function constants of positive arity,

which yields finitely many Herbrand interpretations. The syntax of formulas is defined

the same as in the standard first-order logic. We say that a formula is negative if every

occurrence of every atom in this formula is in the scope of negation.

In this dissertation, for simplicity, we mainly consider a rule of the form

A← B ∧N (2.1)

whereA is a disjunction of atoms, B is a conjunction of atoms, andN is a negative formula
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constructed from atoms using conjunction, disjunction and negation. We identify rule (2.1)

with formulaB∧N → A. We often use comma for conjunction, semi-colon for disjunction,

not for negation, as widely used in the literature on logic programming. For example, N

could be

¬Bm+1∧. . .∧¬Bn∧¬¬Bn+1∧. . .∧¬¬Bp,

which can be also written as

not Bm+1, . . . , not Bn, not not Bn+1, . . . , not not Bp.

We write {A1}ch ← Body, whereA1 is an atom, to denote the ruleA1 ← Body∧¬¬A1.

This expression is called a “choice rule” in ASP.

If the head of a rule (A in (2.1)) is ⊥, we often omit it and call such a rule constraint.

A logic program under the stable model semantics (a.k.a. answer set program) is a finite

conjunction of rules. A logic program is called ground if it contains no variables.

We say that an Herbrand interpretation I is a model of a ground program Π if I satisfies

all implications (2.1) in Π (as in classical logic). Such models can be divided into two

groups: “stable” and “non-stable” models, which are distinguished as follows. The reduct

of Π relative to I , denoted ΠI , consists of “A← B” for all rules (2.1) in Π such that I |= N

(I |= N denotes “I satisfies N” in classical logic). The Herbrand interpretation I is called

a (deterministic) stable model of Π if I is a minimal Herbrand model of ΠI . (Minimality

is understood in terms of set inclusion. We identify an Herbrand interpretation with the set

of atoms that are true in it.)

The definition is extended to any non-ground program Π by identifying it with grσ[Π],

the ground program obtained from Π by replacing every variable with every ground term

of the signature σ.

A weak constraint (Buccafurri et al., 2000; Calimeri et al., 2012) has the form

:∼ F [Weight @ Level]
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where F is a conjunction of literals, Weight is a real number, and Level is a nonnegative

integer.

Let Π be a program Π1 ∪ Π2, where Π1 is an answer set program that does not contain

weak constraints, and Π2 is a set of ground weak constraints. We call I a stable model of

Π if it is a stable model of Π1. For every stable model I of Π and any nonnegative integer

l, the penalty of I at level l, denoted by PenaltyΠ(I, l), is defined as

∑
:∼ F [w@l]∈Π2,

I|=F

w.

For any two stable models I and I ′ of Π, we say I is dominated by I ′ if

• there is some nonnegative integer l such that PenaltyΠ(I ′, l) < PenaltyΠ(I, l) and

• for all integers k > l, PenaltyΠ(I ′, k) = PenaltyΠ(I, k).

A stable model of Π is called optimal if it is not dominated by another stable model of Π.
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Chapter 3

NEURASP

LPMLN (Lee and Wang, 2016) is a probabilistic logic programming language that ex-

tends answer set programs with the concept of weighted rules, whose weight scheme is

adopted from that of Markov Logic (Richardson and Domingos, 2006). Since the param-

eter learning of LPMLN is already by the gradient descent method (Lee and Wang, 2018)

as used in the neural network training, it’s natural to combine ASP and neural networks

through LPMLN. However, there is a technical challenge: the existing parameter learning

method for LPMLN does not scale up to be coupled with typical neural network training. For

example, the simple integration of NN and LPMLN cannot complete the training in a day

for the MNIST Addition problem proposed in Manhaeve et al. (2018). This motivates us

to consider a fragment of LPMLN where the interface between neural networks and ASP is

specified by a neural atom originally proposed in DeepProbLog (Manhaeve et al., 2018).

It turns out that this fragment is general enough to cover the ProbLog language and keeps

the expressiveness of full ASP language. The efficient algorithms we designed to compute

probabilities and gradients in this fragment further serve as the basis of NeurASP. By

treating the neural network output as the probability distribution over atomic facts in ASP,

NeurASP provides a simple and effective way to integrate sub-symbolic and symbolic

computation in both neural network inference and learning.

3.1 Syntax

We assume that neural networkM allows an arbitrary tensor as input whereas the output

is a matrix in Re×n, where e is the number of random events predicted by the neural network

and n is the number of possible outcomes for each random event. Each row of the matrix
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represents the probability distribution of the outcomes of each event. For example, if M is

a neural network for MNIST digit classification, then the input is a tensor representation of

a digit image, e is 1, and n is 10. If M is a neural network that outputs a Boolean value

for each edge in a graph, then e is the number of edges and n is 2. Given an input tensor t,

by M(t), we denote the output matrix of M . The value M(t)[i, j] (where i ∈ {1, . . . , e},

j ∈ {1, . . . , n}) is the probability of the j-th outcome of the i-th event upon the input t.

In NeurASP, the neural network M above can be represented by a neural atom of the

form

nn(m(e, t), [v1, . . . , vn]), (3.1)

where (i) nn is a reserved keyword to denote a neural atom; (ii)m is an identifier (symbolic

name) of the neural network M ; (iii) t is a list of terms that serves as a “pointer” to an input

data; related to it, there is a mapping D (implemented by an external Python code) that

turns t into an input tensor; (iv) v1, . . . , vn represent all n possible outcomes of each of the

e random events.

Each neural atom (3.1) introduces propositional atoms of the form c = v, where c ∈

{m1(t), . . . ,me(t)} and v ∈ {v1, . . . , vn}. The output of the neural network provides the

probabilities of the introduced atoms (defined in Section 3.2).

Example 1 Let Mdigit be a neural network that classifies an MNIST digit image. The input

of Mdigit is (a tensor representation of) an image and the output is a matrix in R1×10. The

neural network can be represented by the neural atom

nn(digit(1, d), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),

which introduces propositional atoms digit1(d)=0, digit1(d)=1, . . . , digit1(d)=9.

Example 2 Let Msp be another neural network for finding the shortest path in a graph

with 24 edges. The input is a tensor encoding the graph and the start/end nodes of the
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path, and the output is a matrix in R24×2. This neural network can be represented by the

neural atom

nn(sp(24, g), [TRUE, FALSE]).

A NeurASP program Π is the union of Πasp and Πnn, where Πasp is a set of proposi-

tional rules (standard rules as in ASP-Core 2 (Calimeri et al., 2020)) and Πnn is a set of

neural atoms. Let σnn be the set of all atoms mi(t) = vj that is obtained from the neural

atoms in Πnn as described above. We require that, in each rule Head ← Body in Πasp, no

atoms in σnn appear in Head.

We could allow schematic variables into Π, which are understood in terms of grounding

as in standard answer set programs. We find it convenient to use rules of the form

nn(m(e, t), [v1, . . . , vn])← Body (3.2)

where Body is either identified by > or ⊥ during grounding so that (3.2) can be viewed as

an abbreviation of multiple (variable-free) neural atoms (3.1).

Example 3 An example NeurASP program Πdigit is as follows, where d1 and d2 are terms

representing two images. Each image is classified by neural network Mdigit as one of the

values in {0, . . . , 9}. The addition of two digit-images is the sum of their values.

img(d1).

img(d2).

nn(digit(1, X), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])← img(X).

addition(A,B,N)← digit1(A)=N1, digit1(B)=N2, N = N1 +N2.

(3.3)

The neural network Mdigit outputs 10 probabilities for each image. The addition is applied

once the digits are recognized and its probability is induced from the perception as we

explain in the next section.
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3.2 Semantics

For any NeurASP program Π = Πasp ∪ Πnn, we first obtain its ASP counterpart Π′ =

Πasp ∪ Πch where Πch consists of the following set of rules for each neural atom (3.1) in

Πnn

{mi(t)=v1; . . . ;mi(t)=vn} = 1 for i ∈ {1, . . . e}.

The above rule (in the language of CLINGO) means to choose exactly one atom in between

the set braces.1 We define the stable models of Π as the stable models of Π′, and define

the total choices of Π as the stable models of Πch. For each total choice C of Π, we

use Num(C,Π) to denote the number of stable models of Π that satisfy C. We require a

NeurASP program Π to be coherent such that Num(C,Π) > 0 for every total choice C of

Π.

To define the probability of a stable model, we first define the probability of an atom

mi(t) = vj in σnn. Recall that there is an external mapping D that turns t into a specific

input tensor of M . The probability of each atom mi(t)=vj is defined as M(D(t))[i, j]:

PΠ(mi(t)=vj) = M(D(t))[i, j].

For instance, recall that the output matrix of Mdigit(D(d)) in Example 3 is in R1×10.

The probability of atom digit1(d) = k is Mdigit(D(d))[1, k+1].

Given an interpretation I , by I|σnn , we denote the projection of I onto σnn. Since I|σnn

is a total choice of Π, Num(I|σnn ,Π) is the number of stable models of Π that agree with

I|σnn on σnn.

The probability of a stable model I of Π is defined as the product of the probability of

each atom c = v in I|σnn , divided by the number of stable models of Π that agree with

1In practice, each atom mi(t) = v is written as m(i, t, v).
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I|σnn on σnn. That is, for any interpretation I ,

PΠ(I) =


∏

c=v∈I|σnn
PΠ(c=v)

Num(I|σnn ,Π)
if I is a stable model of Π;

0 otherwise.

An observation is a set of ASP constraints (i.e., rules of the form ⊥ ← Body). The

probability of an observation O is defined as

PΠ(O) =
∑
I|=O

PΠ(I)

(I |= O denotes that I satisfies O).

The probability of the set O = {O1, . . . , Oo} of observations is defined as the product

of the probability of each Oi:

PΠ(O) =
∏
Oi∈O

PΠ(Oi).

Example 3 Continued The ASP program Π′digit, which is the ASP counterpart of Πdigit,

is obtained from (3.3) by replacing the third rule with

{digit1(d1)=0; . . . ; digit1(d1)=9} = 1.

{digit1(d2)=0; . . . ; digit1(d2)=9} = 1.

The following are the stable models of Πdigit, i.e., the stable models of Π′digit.

I1 = {digit1(d1)=0, digit1(d2)=0, addition(d1, d2, 0), . . . },

I2 = {digit1(d1)=0, digit1(d2)=1, addition(d1, d2, 1), . . . },

I3 = {digit1(d1)=1, digit1(d2)=0, addition(d1, d2, 1), . . . },

. . . ,

I100 = {digit1(d1)=9, digit1(d2)=9, addition(d1, d2, 18), . . . }.

Their probabilities are as follows:

PΠ(I1) = Mdigit(D(d1))[1, 1]×Mdigit(D(d2))[1, 1],

. . . ,

PΠ(I100) = Mdigit(D(d1))[1, 10]×Mdigit(D(d2))[1, 10].
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The probability of O = {← not addition(d1, d2, 1)} is

PΠ(O) = PΠ(I2) + PΠ(I3).

3.3 Inference with NeurASP

We implemented NeurASP by integrating PyTorch (Adam et al., 2017) and CLINGO

(Gebser et al., 2011). PyTorch takes care of neural network processing including data

loading and mapping D that maps pointer terms in neural atoms to input tensors. Com-

puting the probability of a stable model is done by calling CLINGO and post-processing

in Python. This section illustrates how this integration can be useful in reasoning about

relations among objects recognized by neural networks.

3.3.1 Commonsense Reasoning about Image

Suppose we have a neural networkMlabel that outputs classes of objects in the bounding

boxes that are already detected. The following rule asserts that the neural network Mlabel

classifies the bounding box B into one of {car, cat, person, truck, other}, where B is at

location (X1, Y1, X2, Y2) in image I:

nn(label(1, I, B), [car, cat, person, truck, other])← box(I, B,X1, Y1, X2, Y2).

Figure 3.1: Reasoning about Relations among Perceived Objects
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Consider the two images i1 and i2 in Figure 3.3.1. The bounding boxes can be repre-

sented by the following facts.

box(i1, b1, 100, 0, 450, 350).

box(i1, b2, 300, 300, 500, 400).

...

The first rule says that there is a bounding box b1 (i.e., the red box with a child) in image

i1, and the coordinates of its left-top and right-bottom corners are (100, 0) and (450, 350).

Below we describe rules that allow for reasoning about the recognized objects. The

following rules describe the general size relation between objects.

smaller(cat, person).

smaller(person, car).

smaller(person, truck).

smaller(X, Y )← smaller(X,Z), smaller(Z, Y ).

Next is the rule asserting that by default we conclude the same size relationship as above.

smaller(I, B1, B2)← not ∼smaller(I, B1, B2),

label1(I, B1)=L1, label1(I, B2)=L2, smaller(L1, L2).

(The ∼ symbol stands for strong negation in ASP, which asserts explicit falsity.) On the

other hand, there are some exceptions, for instance,

∼smaller(I, B2, B1)← box(I, B1, X1, Y1, X2, Y2), box(I, B2, X
′
1, Y

′
1 , X

′
2, Y

′
2),

Y2 ≥ Y ′2 , |X1 −X2| × |Y1 − Y2| < |X ′1 −X ′2| × |Y ′1 − Y ′2 |.

smaller(I, B1, B2)←∼smaller(I, B2, B1).

toy(I, B1)← label1(I, B1) = L1, label1(I, B2) = L2,

smaller(I, B1, B2), smaller(L2, L1).
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The first rule says that “B2 is not smaller than B1 if (i) B1 and B2 are objects in image I ,

(ii) B1 is closer to the camera (i.e., B1’s bottom boundary is closer to the bottom of I), and

(iii) the box in the image for B1 is smaller than B2.” 2

The neural network model Mlabel outputs that the red boxes are persons, the yellow

boxes are cars, and the green box is a truck. Upon this input and the rules above, NeurASP

allows us to derive that the two cars in image i1 are toy cars, whereas the two cars in image

i2 are not: although they are surrounded by smaller boxes than those of humans, their boxes

are not closer to the camera.

3.3.2 Solving Sudoku Puzzle in Image

Consider the task of solving a Sudoku puzzle given as an image. In NeurASP, we

could use a neural network to recognize the digits in the given puzzle and use an ASP

solver to compute the solution instead of having a single network that accounts for both

perception and solving.

We use the following NeurASP program Πsudoku to first identify the digits in each grid

cell on the board and then find the solution by assigning digits to all empty grid cells. 3

% identify the number in each of the 81 positions

nn(identify(81, img), [empty,1,2,3,4,5,6,7,8,9]).

% assign one number N to each position (R,C)

a(R,C,N) :- identify(Pos,img,N), R=Pos/9, C=Pos\9, N!=empty.

{a(R,C,N): N=1..9}=1 :- identify(Pos, img, empty), R=Pos/9, C=Pos\9.

% no number repeats in the same row

2We assume that the camera is at the same height as the objects.
3The expression {a(R,C,N) : N = 1..9} = 1 is a shorthand for {a(R,C, 1); . . . ; a(R,C, 9)} = 1

in the language of CLINGO.
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:- a(R,C1,N), a(R,C2,N), C1!=C2.

% no number repeats in the same column

:- a(R1,C,N), a(R2,C,N), R1!=R2.

% no number repeats in the same 3*3 box

:- a(R,C,N), a(R1,C1,N), R!=R1, C!=C1, ((R/3)*3 + C/3) = ((R1/3)*3 + C1/3).

The neural network model Midentify is rather simple. It is composed of 5 convolutional

layers with dropout, a max pooling layer, and a 1 × 1 convolutional layer followed by

softmax. Given a Sudoku board image (.png file), neural networkMidentify outputs a matrix

in R81×10, which represents the probabilities of the values (empty, 1, . . . , 9) in each of the

81 grid cells. The network Midentify is pre-trained using 〈image, label〉 pairs, where each

image is a Sudoku board image generated by OpenSky Sudoku Generator (http://www.

opensky.ca/∼jdhildeb/software/sudokugen/) and each label is a vector of length 81 in which

0 is used to represent an empty cell at that position.

Let Accidentify denote the accuracy of identifying all empty cells and the digits on the

board given as an image without making a single mistake in a grid cell. Let Accsol denote

the accuracy of solving a given Sudoku board without making a single mistake in a grid

cell. Let r be the following rule in Πsudoku :

{a(R,C,N): N=1..9}=1 :- identify(Pos, img, empty), R=Pos/9, C=Pos\9.

Table 3.1 compares Accidentify of each of Midentify , NeurASP program Πsudoku \ r with

Midentify , NeurASP program Πsudoku with Midentify , as well as Accsol of Πsudoku with

Midentify .

Intuitively, Πsudoku \r only checks whether the identified numbers (by neural network

Midentify ) satisfy the three constraints (the last three rules of Πsudoku), while Πsudoku further
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Table 3.1: Sudoku: Accuracy on Test Data

Num of Accidentify of Accidentify of Accidentify of Accsol of

Train Data Midentify NeurASP w/ NeurASP w/ NeurASP w/

Πsudoku \r Πsudoku Πsudoku

15 15% 49% 71% 71%

17 31% 62% 80% 80%

19 72% 90% 95% 95%

21 85% 95% 98% 98%

23 93% 99% 100% 100%

25 100% 100% 100% 100%

checks whether there exists a solution given the identified numbers. As shown in Table 3.1,

the use of reasoning in NeurASP program Πsudoku \r improves the accuracy Accidentify

of the neural network Midentify as explained in the introduction. The accuracy Accidentify is

further improved by trying to solve Sudoku completely using Πsudoku . Note that the solution

accuracy Accsol of Πsudoku is equal to the perception accuracy Accidentify of Πsudoku since

the ASP yields a 100% correct solution once the board is correctly identified.

Palm et al. (2018) use a Graph Neural Network to solve Sudoku but the work restricts

attention to textual input of the Sudoku board, not images as we do. Their work achieves

96.6% accuracy after training with 216,000 examples. In comparison, even with the more

challenging task of accepting images as input, the number of training examples we used

is 15 – 25, which is much less than the number of training examples used in (Palm et al.,

2018). Our work takes advantage of the fact that in a problem like Sudoku, where the

constraints are explicitly given, a neural network only needs to focus on perception tasks,

which is simpler than learning the perception and reasoning together.

Furthermore, using the same trained perception neural network Midentify , we can solve
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some elaborations of Sudoku problems by adding the following rules:

[Anti-knight Sudoku] No number repeats at a knight move

:- a(R1,C1,N), a(R2,C2,N), |R1-R2|+|C1-C2|=3.

[Sudoku-X] No number repeats at the diagonals

:- a(R1,C1,N), a(R2,C2,N), R1=C1, R2=C2, R1!=R2.

:- a(R1,C1,N), a(R2,C2,N), R1+C1=8, R2+C2=8, R1!=R2.

With neural network only approach, since the neural network needs to learn both per-

ception and reasoning, each of the above variations would require training a complex and

different model with a big dataset. However, with NeurASP, the neural network only

needs to recognize digits on the board. Thus solving each Sudoku variation above uses the

same pre-trained model for the image input and we only need to add the aforementioned

rules to Πsudoku .

Some Sudoku variations, such as Offset Sudoku, are in colored images. In this case,

we need to increase the number of channels of Midentify from 1 to 3, and need to retrain

the neural network with the colored images. Although not completely elaboration tolerant,

compared to the pure neural network approach, this is significantly simpler. For instance,

the number of training data needed to get 100% perception accuracy for Offset Sudoku

(Accidentify ) is 70, which is still much smaller than what the end-to-end Sudoku solver

would require. Using the new network trained, we only need to add the following rule to

Πsudoku .

[Offset Sudoku] No number repeats at the same relative position in 3*3 boxes

:- a(R1,C1,N), a(R2,C2,N), R1\3 = R2\3, C1\3 = C2\3, R1 != R2, C1 != C2.
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3.4 Learning in NeurASP

In this section, we show how the semantic constraints expressed in NeurASP can be

used to train neural networks better. We denote a NeurASP program by Π(θ) where θ

is the set of the parameters in the neural network models associated with Π. Assume a

NeurASP program Π(θ) and a set O of observations such that PΠ(θ)(O) > 0 for each

O ∈ O. The task is to find θ̂ that maximizes the log-likelihood of observations O under

program Π(θ), i.e.,

θ̂ ∈ argmax
θ

log(PΠ(θ)(O)),

which is equivalent to

θ̂ ∈ argmax
θ

∑
O∈O

log(PΠ(θ)(O)).

Let p denote the probabilities of the atoms in σnn. Since p is indeed the outputs of the neu-

ral networks in Π(θ), we can compute the gradient of p w.r.t. θ through backpropagation.

Then the gradient of
∑
O∈O

log(PΠ(θ)(O)) w.r.t. θ is

∂
∑
O∈O

log(PΠ(θ)(O))

∂θ
=
∑
O∈O

∂log(PΠ(θ)(O))

∂p
× ∂p

∂θ

where ∂p
∂θ

can be computed through the usual neural network backpropagation, while
∂log(PΠ(θ)(O))

∂p
for each p ∈ p can be computed as follows.

Proposition 1 Let Π(θ) be a NeurASP program and let O be an observation such that

PΠ(θ)(O) > 0. Let p denote the probability of an atom c = v in σnn, i.e., p denotes

PΠ(θ)(c = v). We have that4

∂log(PΠ(θ)(O))

∂p
=

∑
I: I|=O
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v)
−

∑
I,v′: I|=O

I|=c=v′,v 6=v′

PΠ(θ)(I)

PΠ(θ)(c=v
′)∑

I: I|=O
PΠ(θ)(I)

.

4 PΠ(θ)(I)

PΠ(θ)(c=v) and PΠ(θ)(I)

PΠ(θ)(c=v′) are still well-defined since the denominators have common factors in

PΠ(θ)(I).
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Intuitively, the proposition tells us that each interpretation I that satisfies O tends to

increase the value of p if I |= c = v, and decrease the value of p if I |= c = v′ such that

v′ 6= v. NeurASP internally calls CLINGO to find all stable models I of Π(θ) that satisfy

O and uses PyTorch to obtain the probability of each atom c = v in σnn.

3.4.1 Learning Digit Classification from Addition

All experiments in Section 3.4 were done on Ubuntu 18.04.2 LTS with two 10-cores

CPU Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and four GP104 [GeForce GTX

1080].

The digit addition problem is a simple example used in (Manhaeve et al., 2018) to

illustrate DeepProbLog’s ability for both logical reasoning and deep learning. The task is,

given a pair of digit images (MNIST) and their sum as the label, to let a neural network

learn the digit classification of the input images.

The problem can be represented by NeurASP program Πdigit in Example 3. For com-

parison, we use the same dataset and the same structure of the neural network model

used in (Manhaeve et al., 2018) to train the digit classifier Mdigit in Πdigit. For each

pair of images denoted by d1 and d2 and their sum n, we construct the ASP constraint

← not addition(d1, d2, n) as the observation O. The training target is to maximize

log(PΠdigit(O)).

Figure 3.2 shows how the forward and the backward propagations are done for

NeurASP program Πdigit in Example 3. The left-to-right direction is the forward com-

putation of the neural network extended with the rule layer, whose output is the probability

of the observation O. The right-to-left direction shows how the gradient from the rule layer

is backpropagated further into the neural network by the chain rule to update all neural

network parameters so as to find the parameter values that maximize the probability of the

given observation.
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Figure 3.2: NeurASP Gradient Propagation

Figure 3.3: NeurASP v.s. DeepProbLog

Figure 3.3 shows the accuracy on the test data after each training iteration. The method

CNN denotes the baseline used in (Manhaeve et al., 2018) where a convolutional neural

network (with more parameters) is trained to classify the concatenation of the two im-

ages into the 19 possible sums. As we can see, the neural networks trained by NeurASP

and DeepProbLog converge much faster than CNN and have almost the same accuracy at

each iteration. However, NeurASP spends much less time on training compared to Deep-

ProbLog. The time reported is for one epoch (30,000 iterations in gradient descent). This

is because DeepProbLog constructs an SDD (Sequential Decision Diagram) at each iter-

ation for each training instance (i.e., each pair of images). This example illustrates that
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generating many SDDs could be more time-consuming than enumerating stable models in

NeurASP computation. In general, there is a trade-off between the two methods and other

examples may show the opposite behavior.

3.4.2 Learning How to Solve Sudoku

In section 3.3.2, we used a neural networkMidentify to identify the numbers on a Sudoku

board and used ASP rules to solve the Sudoku problem. In this section, we use a neural

network to learn to solve Sudoku problems. The task is, given the textual representation of

an unsolved Sudoku board (in the form of a 9×9 matrix where an empty cell is represented

by 0), to let a neural network learn to predict the solution of the Sudoku board.

We use the neural network Msol from (Park, 2018) as the baseline. Msol is composed

of 9 convolutional layers and a 1x1 convolution layer followed by softmax. Park (2018)

trained Msol using 1 million examples and achieved 70% accuracy using an “inference

trick”: instead of predicting digits for all empty cells at once, which leads to a poor accu-

racy, the most probable grid-cell value was predicted one by one.

Since the current NeurASP implementation is not as scalable as neural network train-

ing, training on 1 million examples takes too long. Thus, we construct a dataset of 63,000 +

1000 〈config, label〉 pairs for training and testing. Using Park’s method on this relatively

small dataset, we observe that Msol’s highest whole-board accuracy Accsol 5 is only 29.1%

and Msol’s highest grid-cell accuracy6 is only 89.3% after 63 epochs of training.

We get a better result by training Msol with the NeurASP program Πsol. The program

is almost the same as Πidentify in Section 3.3.2 except that it uses Msol in place of Midentify

and the first three rules of Πidentify are replaced with

nn(sol(81, img), [1,2,3,4,5,6,7,8,9]).

5The percentage of Sudoku examples that are correctly solved.
6The percentage of grid cells having correct digits regardless whether the Sudoku solution is correct.
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a(R,C,N) :- sol(Pos,img,N), R=Pos/9, C=Pos\9.

because we do not have to assign the value empty in solving Sudoku.

We trained Msol using NeurASP where the training target is to maximize the probabil-

ity of all stable models that satisfy the observation. On the same test data, after 63 epochs

of training, the highest whole-board accuracy of Msol trained this way is 66.5% and the

highest grid-cell accuracy is 96.9% (In other words, we use rules only during training and

not during testing). This indicates that including such structured knowledge sometimes

helps the training of the neural network significantly.

3.4.3 Learning Shortest Path (SP)

The experiment is about, given a graph and two points, finding the shortest path be-

tween them. We use the dataset from (Xu et al., 2018), which was used to demonstrate the

effectiveness of semantic constraints for enhanced neural network learning. Each example

is a 4 by 4 grid G = (V,E), where |V | = 16, |E| = 24. The source and the destination

nodes are randomly picked up, as well as 8 edges are randomly removed to increase the

difficulty. The dataset is divided into 60/20/20 train/validation/test examples.

The following NeurASP program 7

nn(sp(24, g), [true, false]).

sp(0,1) :- sp(1,g,true).

...

sp(X,Y) :- sp(Y,X).

together with the union of the following 4 constraints defines the shortest path.

% [nr] 1. No removed edges should be predicted

7sp(X, g, true) means edge X is in the shortest path. sp(X,Y ) means there is a path between nodes X

and Y in the shortest path.
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:- sp(X,g,true), removed(X).

% [p] 2. Prediction must form a simple path, i.e., the degree of each node must

be either 0 or 2

:- X=0..15, #count{Y: sp(X,Y)} = 1.

:- X=0..15, #count{Y: sp(X,Y)} >= 3.

% [r] 3. Every 2 nodes in the prediction must be reachable

reachable(X,Y) :- sp(X,Y).

reachable(X,Y) :- reachable(X,Z), sp(Z,Y).

:- sp(X,A), sp(Y,B), not reachable(X,Y).

% [o] 4. Predicted path should contain least edges

:∼ sp(X,g,true). [1, X]

In this experiment, we trained the same neural network model Msp as in (Xu et al.,

2018), a 5-layer Multi-Layer Perceptron (MLP), but with 4 different settings: (i) MLP

only; (ii) together with NeurASP with the simple-path constraint (p) (which is the only

constraint used in (Xu et al., 2018)); 8 (iii) together with NeurASP with simple-path,

reachability, and optimization constraints (p-r-o); and (iv) together with NeurASP with

all 4 constraints (p-r-o-nr). 9

Table 3.2 shows, after 500 epochs of training, the percentage of the predictions on the

test data that satisfy each of the constraints p, r, and nr, the path constraint (i.e., p-r), the

shortest path constraint (i.e., p-r-o-nr), and the accuracy w.r.t. the ground truth.

The accuracies for the first experiment (MLP Only) show that Msp was not trained

8A path is simple if every node in the path other than the source and the destination has only 1 incoming

edge and only 1 outgoing edge.
9Other combinations are either meaningless (e.g., o) or having similar results (e.g. p-r is similar to p).
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well only by minimizing the cross-entropy loss of its prediction: 100-28.3 = 71.7% of the

predictions are not even a simple-path.

In the remaining experiments (MLP (x)), instead of minimizing the cross-entropy loss,

our training target is changed to maximizing the probability of all stable models under cer-

tain constraints. The accuracies under the 2nd and 3rd experiments (MLP (p) and MLP

(p-r-o) columns) are increased significantly, showing that (i) including such structured

knowledge helps the training of the neural network and (ii) the more structured knowl-

edge included, the better Msp is trained under NeurASP. Compared to the results from

(Xu et al., 2018), Msp trained by NeurASP with the simple-path constraint p (in the 2nd

experiment MLP (p) column) obtains a similar accuracy on predicting the label (28.9% v.s.

28.5%) but a higher accuracy on predicting a simple-path (96.6% v.s. 69.9%).

In the 4th experiment (MLP (p-r-o-nr) column) where we added the constraint nr saying

that “no removed edges can be predicted”, the accuracies go down. This is because the new

constraint nr is about randomly removed edges, changing from one example to another,

which is hard to be generalized.

Table 3.2: Shortest Path: Accuracy on Test Data: Columns Denote MLPs Trained with
Different Rules; Each Row Represents the Percentage of Predictions that Satisfy the Con-
straints

Predictions MLP Only MLP MLP MLP

satisfying (p) (p-r-o) (p-r-o-nr)

p 28.3% 96.6% 100% 30.1%

r 88.5% 100% 100% 87.3%

nr 32.9% 36.3% 45.7% 70.5%

p-r 28.3% 96.6% 100% 30.1%

p-r-o-nr 23.0% 33.2% 45.7% 24.2%

label (ground truth) 22.4% 28.9% 40.1% 22.7%
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3.5 Extend NeurASP with Probabilistic Rules

Multi-valued probabilistic programs are a fragment of LPMLN programs that distin-

guishes between probabilistic rules and regular rules. We first present the definition of

Multi-Valued Probabilistic Programs (MVPP) from (Lee and Wang, 2016) with some mod-

ifications. Then we present the extended NeurASP with probabilistic rules, whose se-

mantics is defined by a translation to MVPP. We assume that the reader is familiar with

ASP-Core2 (Calimeri et al., 2020).

3.5.1 Multi-Valued Probabilistic Programs

We assume a propositional signature σ that is constructed from “constants” and their

“values.” A constant c is associated with a finite set Dom(c), called the domain of c. The

signature σ is constructed from a finite set of constants, consisting of atoms c=v for every

constant c and every element v in Dom(c). If the domain of c is {FALSE, TRUE} then we

say that c is Boolean, and abbreviate c= TRUE as c and c= FALSE as ∼c.10 We assume that

constants are divided into probabilistic constants and non-probabilistic constants. By σp,

we denote the set of atoms in σ that are constructed from the probabilistic constants.

Syntax: A probabilistic rule is of the form

p1 :c=v1 | p2 :c=v2 | . . . | pn :c=vn (3.4)

where pi are real numbers in [0, 1] (denoting probabilities) such that
∑

i∈{1,...,n}
pi = 1, and c

is a probabilistic constant in σ, and {v1, . . . , vn} = Dom(c). If Dom(c) = {FALSE, TRUE},

rule p1 : c | p2 :∼c can be abbreviated as p1 : c .

A Multi-Valued Probabilistic Program is the union of Πpr and Πasp, where Πpr consists

of probabilistic rules (3.4), one for each probabilistic constant c in σp, and Πasp consists of

rules of the form Head ← Body, following the rule format of ASP-Core2 where Head
10The use of symbol ∼ is intentional; the semantics of c= FALSE works the same as strong negation.
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contains no probabilistic constants.

Example 4 Consider the game of flipping a coin where we win if we got head. Suppose

the coin is biased and the probability of getting head is 0.1, then this problem can be

represented by the following MVPP program Πcoin where head is a probabilistic constant

and win is a non-probabilistic constant.

0.1: head.

win :- head.

∼win :- not win.

Semantics: Given an MVPP program Π, we obtain an ASP program Π′ from Π by replac-

ing each rule (3.4) with

1{c=v1; . . . ; c=vn}1

which means to choose only one atom from the set {c= v1, . . . , c= vn}. In addition, Π′

contains the rule

← 2{c = v1; . . . ; c = vn}.

for each non-probabilistic constant cwith Dom(c) = {v1, . . . , vn}. That is, non-probabilistic

constants are allowed to have no values.

The stable models of Π are defined as the stable models of Π′.

To define the probability of a stable model, we first define the probability of an atom

c=v in σp. We know there must be exactly one probabilistic rule (3.4) for each probabilistic

constant c. Thus we can always find such a rule (3.4) for any atom c = v in σp, and the

probability of c=vi, denoted by PΠ(c=vi), is defined as pi in rule (3.4).

The probability of a stable model I of Π, denoted by PΠ(I), is defined as the product

of the probability of each atom c = v in I ∩ σp, divided by the number of stable models

satisfied by I ∩σp. In the following equation, we use I|σp to denote I ∩σp, which is indeed
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the projection of I onto σp. We also use Num(I|σp ,Π) to denote the number of stable

models of Π that satisfy I|σp .

PΠ(I) =


∏

c=v∈I|σp
PΠ(c=v)

Num(I|σp ,Π)
if I is a stable model of Π;

0 otherwise.

An observation is a set of ASP constraints (i.e., rules of the form ⊥ ← Body). The

probability of an observation O is defined as

PΠ(O) =
∑
I|=O

PΠ(I).

The probability of the set O = {O1, . . . , Oo} of independent observations, where each Oi

is a set of ASP constraints, is defined as the product of the probability of each Oi:

PΠ(O) =
∏
Oi∈O

PΠ(Oi).

Example 4 Continued: The following ASP program is Π′coin (the ASP counter-part of

Πcoin).

win=true :- head=true.

win=false :- not win=true.

1{head=true; head=false}1.

:- 2{win=true; win=false}.

It has 2 stable models: I1 = {head = TRUE, win = TRUE} and I2 = {head = FALSE, win =

FALSE}, which are the stable models of Πcoin. There are 2 atoms in σp and their proba-

bilities are PΠcoin(head = TRUE) = 0.1 and PΠcoin(head = FALSE) = 0.9. Then the

probabilities of I1 and I2 can be computed as follows.

PΠcoin(I1) =
0.1

1
= 0.1 PΠcoin(I2) =

0.9

1
= 0.9

And the probability of O = {not win = TRUE} is PΠcoin(O)) = PΠcoin(I2) = 0.9.
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3.5.2 Define NeurASP on a Translation to MVPP

Syntax: We first define the notion of a neural atom to describe a neural network in a

logic program. Intuitively, a neural atom can be seen as the shorthand for a sequence of

probabilistic rules whose atoms are defined by a syntactical translation from the neural

atom and whose probabilities are the outputs of neural networks.

We assume that neural network M allows an arbitrary tensor as input whereas the out-

put is a matrix in Re×n, where e is the number of random events predicted by the neural

network, and n is the number of possible outcomes for each random event. Each row of

the matrix represents the probability distribution of the outcomes of each event. Given an

input tensor t, by M(t), we denote the output matrix of M . M(t)[i, j] (i ∈ {1, . . . , e},

j ∈ {1, . . . , n}) is the probability at the i-th row and j-th column of the matrix. For exam-

ple, in a neural network for MNIST digit classification, the input is a tensor representation

of a digit image, e is 1, and n is 10. For a neural network that outputs a Boolean value for

each edge in a graph, e is the number of edges and n is 2.

In NeurASP, the neural network M above can be represented by a neural atom of the

form

nn(m(e, t), [v1, . . . , vn]), (3.5)

where (i) nn is a reserved keyword to denote a neural atom; (ii)m is an identifier (symbolic

name) of the neural network M ; (iii) t is a list of terms that serves as a “pointer” to an input

data; the mapping D is implemented by the external Python code that accepts NeurASP

program as input, and can map t to different data instances by iteratively loading from the

dataset; this is useful for training; (iv) v1, . . . , vn represent all n possible outcomes of each

of the e random events.

Each neural atom (3.5) introduces propositional atoms of the form c = v, where c ∈

{m1(t), . . . ,me(t)} and v ∈ {v1, . . . , vn}. The output of the neural network provides the
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probabilities of the introduced atoms (defined in Section 3.2).

Example 5 Let Mdigit be a neural network that classifies an MNIST digit image. The input

of Mdigit is (a tensor representation of) an image and the output is a matrix in R1×10. The

neural network can be represented as the neural atom

nn(digit(1, d), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

which introduces propositional atoms digit1(d)=0, digit1(d)=1, . . . , digit1(d)=9.

Let Msp be another neural network for finding the shortest path in a graph with 24

edges. The input is a tensor encoding the graph and the start/end nodes of the path, and

the output is a matrix in R24×2. This neural network can be represented as the neural atom

nn(sp(24, g), [TRUE, FALSE]).

A NeurASP program Π is the union of Πmvpp and Πnn where Πmvpp is an MVPP

program, and Πnn is a set of neural atoms. Let σnn be the set of all atoms c = v that is

obtained from the neural atoms in Πnn as described above. We require that no atoms in σnn

appear in the probabilistic rules in Πmvpp or in Head of each ASP rule Head ← Body in

Πmvpp.

We could allow schematic variables into Π, which are understood in terms of grounding

as in standard answer set programs. We find it convenient to use rules of the form

nn(m(e, t), [v1, . . . , vn])← Body (3.6)

where Body is either identified by > or ⊥ during grounding so that (3.6) can be viewed as

an abbreviation of multiple (variable-free) neural atoms (3.5).

Example 6 An example NeurASP program Πdigit is as follows, where d1 and d2 are terms

representing two images. Each image is classified by neural network Mdigit as one of the
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values in {0, . . . , 9}. The addition of two digit-images is the sum of their values.

img(d1).

img(d2).

nn(digit(1, X), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])← img(X).

addition(A,B,N)← digit1(A)=N1, digit1(B)=N2, N = N1 +N2.

The neural network Mdigit generates 10 probabilities for each image. The addition is ap-

plied once the digits are recognized and its probability is induced from the perception as

we explain in the next section.

Semantics: For any NeurASP program Π = Πmvpp ∪ Πnn, we obtain its MVPP coun-

terpart Π′ by replacing each neural atom nn(m(e, t), [v1, . . . , vn]) in Πnn with the set of

probabilistic rules

p1,1 : m1(t)=v1 | . . . | p1,n : m1(t)=vn

. . .

pe,1 : me(t)=v1 | . . . | pe,n : me(t)=vn

where pi,j denotes the probability of atom mi(t) = vj . Recall that there is an external

mapping D that turns t into a specific input tensor of M , the value of pi,j is the neural

network output M(D(t))[i, j].

The stable models of a NeurASP program Π are defined as the stable models of its

MVPP counterpart Π′. The probability of each stable model I under Π is defined as its

probability under Π′.

Example 6 Continued: The following MVPP program is Π′digit, i.e., the MVPP counter-
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part of Πdigit.

img(d1).

img(d2).

addition(A,B,N)← digit1(A)=N1, digit1(B)=N2, N = N1 +N2.

pd1
1,1 : digit1(d1)=0 | . . . | pd1

1,10 : digit1(d1)=9

pd2
1,1 : digit1(d2)=0 | . . . | pd2

1,10 : digit1(d2)=9

Recall that Mdigit(D(d)) ∈ R1×10 is the output matrix of Mdigit in Example 6 with input

D(d). For d ∈ {d1, d2} and j ∈ {0, . . . , 9}, the value of pd1,j is the neural network output

Mdigit(D(d))[1, j].

3.6 Detailed Description of Learning Algorithms for NeurASP

Consider a NeurASP program Π(θ) and a set O of observations such that PΠ(θ)(O) >

0 for each O ∈ O. The task is to find θ̂ that maximizes the log-likelihood of observations

O under program Π(θ), i.e.,

θ̂ ∈ argmax
θ

log(PΠ(θ)(O)),

which is equivalent to

θ̂ ∈ argmax
θ

∑
O∈O

log(PΠ(θ)(O)).

Let p denote the probabilities of the atoms in σnn. Since p is indeed the outputs of the neu-

ral networks in Π(θ), we can compute the gradient of p w.r.t. θ through back-propagation.

Then the gradients of
∑
O∈O

log(PΠ(θ)(O)) w.r.t. θ is

∂
∑
O∈O

log(PΠ(θ)(O))

∂θ
=
∑
O∈O

∂log(PΠ(θ)(O))

∂p
× ∂p

∂θ

where ∂p
∂θ

can be computed through the usual neural network back-propagation, while
∂log(PΠ(θ)(O))

∂p
for each p ∈ p can be computed with Proposition 1.
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Algorithm 1 shows how to update the value of θ to maximize the log-likelihood of

observations O under Π(θ).

Algorithm 1 NeurASP weight learning by exact computation
Input:

1. Π(θ): a NeurASP program (under signature σ) with parameters θ

2. O: a set of observations Oi such that PΠ(θ)(Oi) > 0

3. D: a set of mappings {D1, . . . ,Dn} where each Di is associated with Oi and maps

terms to input tensors of neural networks in Π(θ)

4. lr: a real number denoting learning rate

5. epoch: a positive integer denoting the number of epochs

Output: θ̂: the updated parameters such that θ̂ ∈ argmax
θ

log(PΠ(θ)(O))

Procedure:

1. Repeat for epoch number of times:

(a) For Oi in O:

i. Compute the outputs p of the neural networks in Π(θ) according to Di

ii. Compute ∂p
∂θ

by back-propagation

iii. Find all stable models IOi of Π(θ) that satisfy Oi

iv. gradients = gradientsSM (Π(θ), p, IOi)

v. θ = θ + lr * gradients * ∂p
∂θ

2. return θ

Algorithm 1 uses the function gradientsSM , which is defined in Algorithm 2 below.
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Algorithm 2 gradientsSM : compute gradients of the probability of a set of stable models
Input:

1. Π(θ): a NeurASP program (under signature σ) with parameters θ

2. p: the probabilities of the atoms in σnn

3. I: a set of stable models of Π(θ), whose probabilities are to be maximized

Output:
∂log(

∑
Ii∈I

PΠ(θ)(Ii))

∂p
: the gradients of the log-likelihood of I w.r.t. p

Procedure:

1. If |I| = 1, for each p ∈ p, where p denotes the probability of one atom c = v ∈ σnn:

• if I contains c = v, gradient(p) = 1
p

• else, I must contain c = v′ for some v′ 6= v, and gradient(p) = - 1
PΠ(θ)(c=v

′)

2. If |I| ≥ 2:

(a) compute PΠ(θ)(I) for each I in I; denominator =
∑
I∈I

PΠ(θ)(I)

(b) for each p ∈ p, where p denotes the probability of one atom c = v ∈ σnn:

i. numerator = 0; for each I ∈ I:

• if I contains c = v, numerator += 1
p
PΠ(θ)(I)

• else, I must contain c = v′ for some v′ 6= v, and numerator -=

1
PΠ(θ)(c=v

′)
PΠ(θ)(I)

ii. gradient(p) = numerator
denominator

3. return [gradient(p) for p in p]

Algorithm 3 is almost the same as Algorithm 1 except that, in step 1-(a)-iii, instead

of finding all stable models that satisfy Oi, it randomly samples num of samples stable
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Algorithm 3 NeurASP weight learning by sampling stable models
Input:

1. Π(θ): a NeurASP program (under signature σ) with parameters θ

2. O: a set of observations Oi such that PΠ(θ)(O) > 0

3. D: a set of mappings {D1, . . . ,Dn} where each Di is associated with Oi and maps

terms to input tensors of neural networks in Π(θ)

4. num of samples: the number of stable models sampled for each Oi in each iteration

5. lr: a real number denoting learning rate

6. epoch: a positive integer denoting the number of epochs

Output: θ̂: the updated parameters such that θ̂ ∈ argmax
θ

log(PΠ(θ)(O))

Procedure:

1. Repeat for epoch number of times:

(a) For Oi in O:

i. Compute the outputs p of the neural networks in Π(θ) according to Di

ii. Compute ∂p
∂θ

by back-propagation

iii. Sample num of samples stable models of Π(θ) that satisfy Oi according

to their probability distribution:

I = sampleSM(Π(θ), Oi, num of samples)

iv. gradients = gradientsSM (Π(θ), p, I)

v. θ = θ + lr * gradients * ∂p
∂θ

2. return θ
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models that satisfy Oi according to their probability distribution. The function sampleSM

used in Algorithm 3 to sample stable models is defined in Algorithm 4.

Algorithm 4 sampleSM : sample num of samples stable models that satisfy O
Input:

1. Π(θ): a NeurASP program (under signature σ) with parameters θ

2. O: an observation in the form of a set of ASP constraints

3. num of samples: the number of sample stable models generated for O

Output: I: a list of stable models of Π(θ) ∪ O such that |I| ≥ num of samples and the

probability distribution of I follows the distribution defined by Π(θ)

Procedure:

1. SM = []; obtain Π′ from Π(θ) according to the semantics

2. while True: do

(a) obtain an ASP program P from Π′ by randomly replacing each choice rule

{c = v1 ; . . . ; c = vn} = 1 in Π′ with a fact “c = vi.” according to the

probability distribution 〈PΠ(θ)(c = v1), . . . , PΠ(θ)(c = vn)〉;

(b) generate the set S of all stable models of P ∪O (by calling CLINGO on P ∪O);

(c) append each element in S to SM;

(d) if |SM | ≥ num of samples: break the loop;

3. return SM
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3.7 Proof of Proposition 1

Proposition 1 Let Π(θ) be a NeurASP program and let O be an observation such that

PΠ(θ)(O) > 0. Let p denote the probability of an atom c = v in σnn, i.e., p denotes

PΠ(θ)(c = v). We have that

∂log(PΠ(θ)(O))

∂p
=

∑
I: I|=O
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v)
−

∑
I,v′: I|=O

I|=c=v′,v 6=v′

PΠ(θ)(I)

PΠ(θ)(c=v
′)∑

I: I|=O
PΠ(θ)(I)

.

Proof.

∂log(PΠ(θ)(O))

∂pi

=
∂log(PΠ(θ)(O))

∂PΠ(θ)(c = v)

=
1

PΠ(θ)(O)
×

∂PΠ(θ)(O)

∂PΠ(θ)(c = v)

(since PΠ(θ)(O) =
∑
I|=O

PΠ(θ)(I))

=
1∑

I|=O
PΠ(θ)(I)

×
∂
∑
I|=O

PΠ(θ)(I)

∂PΠ(θ)(c = v)

(since (i) PΠ(θ)(I) = 0 if I is not a stable model of Π(θ) and

(ii) any stable model I of Π(θ) must satisfy c = v∗ for some v∗)

=
1∑

I|=O
PΠ(θ)(I)

×
(∂

∑
I is a stable model of Π(θ)

I|=O
I�c=v

PΠ(θ)(I)

∂PΠ(θ)(c = v)
+

∂
∑

I,v′|I is a stable model of Π(θ)
I|=O

I�c=v′,v 6=v′

PΠ(θ)(I)

∂PΠ(θ)(c = v)

)

(since for any stable model I of Π(θ), PΠ(θ)(I) =

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ)) )
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=
1∑

I|=O
PΠ(θ)(I)

×
(∂

∑
I is a stable model of Π(θ)

I|=O
I�c=v

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

∂PΠ(θ)(c = v)
+

∂
∑

I is a stable model of Π(θ)
I|=O

I�c=v′,v 6=v′

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

∂PΠ(θ)(c = v)

)

=
1∑

I|=O
PΠ(θ)(I)

×
( ∑
I is a stable model of Π(θ)

I|=O
I�c=v

∂

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

∂PΠ(θ)(c = v)
+

∑
I is a stable model of Π(θ)

I|=O
I�c=v′,v 6=v′

∂

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

∂PΠ(θ)(c = v)

)

=
1∑

I|=O
PΠ(θ)(I)

×
( ∑
I is a stable model of Π(θ)

I|=O
I�c=v

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

PΠ(θ)(c = v)
+

∑
I is a stable model of Π(θ)

I|=O
I�c=v′,v 6=v′

∂

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

∂PΠ(θ)(c = v′)
×

∂PΠ(θ)(c = v′)

∂PΠ(θ)(c = v)

)

(since PΠ(θ)(c = v′) = 1− PΠ(θ)(c = v)− . . . )

=
1∑

I|=O
PΠ(θ)(I)

×
( ∑
I is a stable model of Π(θ)

I|=O
I�c=v

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

PΠ(θ)(c = v)
+

∑
I is a stable model of Π(θ)

I|=O
I�c=v′,v 6=v′

∏
c∗=v∗∈I|σm

PΠ(θ)(c
∗=v∗)

Num(I|σm ,Π(θ))

PΠ(θ)(c = v′)
×−1

)
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=
1∑

I|=O
PΠ(θ)(I)

×
( ∑

I|=O
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c = v)
−

∑
I|=O

I|=c=v′,v 6=v′

PΠ(θ)(I)

PΠ(θ)(c = v′)

)
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Chapter 4

CL-STE

CL-STE is a general method to encode logical constraints in propositional logic as a Con-

straint Loss function so that minimizing its value via a Straight-Through-Estimator (STE)

makes neural network prediction follow the logical constraints.

Compared to NeurASP, training a NN with CL-STE costs significantly less time since

CL-STE computes a gradient for each clause independently instead of computing a gra-

dient for the whole logic program with a combinatorial computation, allowing for more

efficient and parallel computation with batch training and GPUs. On the other hand,

CL-STE requires hyper-parameters to balance the effects of different loss functions and

hyper-parameter tuning is often needed to achieve the best performance.

In this chapter, we first discuss STE and its relation to Trainable Gate Function, then

propose the CL-STE method, followed by four learning tasks for CL-STE to demonstrate

its domain of usage and its pros and cons in terms of ease of representation, accuracy, and

time efficiency.

4.1 STE and Trainable Gate Function

Review. STEs are used to estimate the gradients of a discrete function. Courbariaux

et al. (2015) consider a binarization function b that transforms real-valued weights x into

discrete values b(x) as b(x) = 1 if x ≥ 0 and b(x) = 0 otherwise. A loss function L is

defined on binarized weights b(x), but the gradient descent won’t update binarized weights

in small increments. However, using STE, we could update the real-valued weights x

that are input to b(x). In the end, a quantized model consists of binarized weights b(x)

only. More specifically, according to the chain rule, the gradient of loss L w.r.t. x is ∂L
∂x

=
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∂L
∂b(x)

× ∂b(x)
∂x

, where ∂b(x)
∂x

is zero almost everywhere. The idea is to replace ∂b(x)
∂x

with an

STE ∂s(x)
∂x

for some (sub)differentiable function s(x). The STE ∂s(x)
∂x

is called the identity

STE (iSTE) if s(x) = x and is called the saturated STE (sSTE) if s(x) = clip(x, [−1, 1]) =

min(max(x,−1), 1). Since ∂s(x)
∂x

= 1, by ∂L
∂x

iSTE
≈ ∂L

∂b(x)
, we denote the identification of ∂L

∂x

with ∂L
∂b(x)

under iSTE.

Directly applying STE doesn’t work well since the binarization function b(x) passes

only the sign of x while information about the magnitude of x is lost (Simons and Lee,

2019). In XNOR-Net (Rastegari et al., 2016), the input x is normalized to have the zero

mean and a small variance before the binarization to reduce the information loss. In this

work, we normalize x by turning it into a probability using softmax or sigmoid activa-

tion functions. Indeed, several neuro-symbolic learning methods (e.g., DeepProbLog,

NeurASP, NeuroLog) assume the neural network outputs that are fed into the logic

layer are normalized as probabilities. To address a probabilistic input, we introduce a

variant binarization function bp(x) for probabilities x ∈ [0, 1]: bp(x) = 1 if x ≥ 0.5 and

bp(x) = 0 otherwise. It is easy to see that iSTE and sSTE work the same with bp(x) since

x = clip(x, [−1, 1]) when x ∈ [0, 1]. A vector x is allowed as input to the binarization

functions b and bp, in which case they are applied to each element of x.

TGF and Its Relation to STE. The concept of STE is closely related to that of the

Trainable Gate Function (TGF) from (Kim et al., 2020), which was applied to channel

pruning. Instead of replacing the gradient ∂b(x)
∂x

with an STE, TGF tweaks the binarization

function b(x) to make it meaningfully differentiable. More specifically, a differentiable

binarization function b̃K is defined as

b̃K(x) = b(x) + sK(x)g(x), (4.1)

where K is a large constant; sK(x) = Kx−bKxc
K

is called a gradient tweaking function,

whose value is less than 1
K

and whose gradient is always 1 wherever differentiable; g(x)
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Figure 4.1: Trainable Gate Function b̃K(x) When g(x) = 1

is called a gradient shaping function, which could be an arbitrary function, but the authors

note that the selection does not affect the results critically and g(x) = 1 can be adopted

without significant loss of accuracy. As obvious from Figure 4.1, asK becomes large, TGF

b̃K(x) is an approximation of b(x), but its gradient is 1 wherever differentiable.

Proposition 2 tells us a precise relationship between TGF and STE: when K is big

enough, the binarization function b(x) with iSTE or sSTE can be simulated by TGF. In

other words, Proposition 2 allows us to visualize b(x) with STE as the TGF b̃K(x) with

K =∞ as Figure 4.1 illustrates.

Proposition 2 When K approaches ∞ and |g(x)| ≤ c for some constant c, the value of

b̃K(x) converges to b(x):

lim
K→∞

b̃K(x) = b(x).

The gradient ∂b̃
K(x)
∂x

, wherever defined, is exactly the iSTE of ∂b(x)
∂x

if g(x) = 1, or the sSTE

of ∂b(x)
∂x

if

g(x) =


1 if −1 ≤ x ≤ 1,

0 otherwise.

Proposition 2 still holds if we replace b(x) with bp(x).

The proposition yields insights into STE and TGF in terms of each other. As shown

in Figure 4.1, TGF is a sawtooth function that approximates a step function as K becomes

large. At large, TGF works like a discrete function, but it is differentiable almost every-

where. In view of Proposition 2, this fact gives an idea why the STE method works in
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practice. On the other hand, the proposition tells that the implementation of TGF can be

replaced with STE. That could be better because TGF in equation (4.1) requires that K

approximate infinity and be non-differentiable when x is a multiple of 1
K

whereas STE is

differentiable at every x.

4.2 Enforcing Logical Constraints using STE

This section presents our method of encoding logical constraints in propositional logic

as a loss function so that minimizing its value via STE makes neural network prediction

follow the logical constraints.

4.2.1 Encoding CNF as a Loss Function Using STE

We first review the terminology in propositional logic. A signature is a set of symbols

called atoms. Each atom represents a proposition that is true or false. A literal is either

an atom p (positive literal) or its negation ¬p (negative literal). A clause is a disjunction

over literals, e.g., p1 ∨ ¬p2 ∨ p3. A Horn clause is a clause with at most one positive

literal. We assume a (propositional) theory consisting of a set of clauses (sometimes called

a CNF (Conjunctive Normal Form) theory). A truth assignment to atoms satisfies (denoted

by |=) a theory if at least one literal in each clause is true under the assignment. A theory

is satisfiable if at least one truth assignment satisfies the theory. A theory entails (also

denoted by |=) a literal if every truth assignment that satisfies the theory also satisfies that

literal.

We define a general loss function Lcnf for any CNF theory as follows. Here, bold upper

and lower letters (e.g., C and v) denote matrices and vectors, respectively; C[i, j] and v[i]

denote their elements.

Consider a propositional signature σ = {p1, . . . , pn}. Given (i) a theory C consisting

of m clauses (encoding domain knowledge), (ii) a set F of atoms denoting some atomic
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Figure 4.2: Architecture That Overlays Constraint Loss

facts that we assume known to be true (representing the ground-truth label of a data in-

stance), and (iii) a truth assignment v such that v |= F , we construct their matrix/vector

representations as

• the matrix C ∈ {−1, 0, 1}m×n to represent the theory such that C[i, j] is 1 (−1, resp.)

if pj (¬pj , resp.) belongs to the i-th clause in the theory, and is 0 if neither pj nor ¬pj

belongs to the clause;

• the vector f ∈ {0, 1}n to represent F such that f [j] is 1 if pj ∈ F and is 0 otherwise;

and

• the vector v ∈ {0, 1}n to represent v such that v[j] is 1 if v(pj) = TRUE, and is 0 if

v(pj) = FALSE.

Figure 4.2 shows an architecture that overlays the two loss functions Lbound and Lcnf

over the neural network output, where Lcnf is the main loss function to encode logical

constraints and Lbound is a regularizer to limit the raw neural network output not to grow too

big (more details will follow). The part input is a tensor (e.g., images) for a data instance;

label denotes the labels of input data; C encodes the domain knowledge, x ∈ [0, 1]n

denotes the NN output (in probability), and f ∈ {0, 1}n records the known facts in that
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data instance (e.g., given digits in Sudoku).1 Let 1{k}(X) denote an indicator function

that replaces every element in X with 1 if it is k and with 0 otherwise. Then the binary

prediction v is constructed as v = f + 1{0}(f) � bp(x), where � denotes element-wise

multiplication. Intuitively, v is the binarized NN output with part of it strictly following

the given facts specified in f (ensuring v |= F ).

Example 7 Consider a simple example mnistAdd from (Manhaeve et al., 2018), where the

task is, given a pair of MNIST digit images and their sum as the label, to let a neural net-

work learn the digit classification of the input images. The example is used to demonstrate

how NNs can learn from known constraints. In Figure 4.2, the input consists of two-digit

images i1 and i2, and the label is an integer l in {0, ..., 18} denoting the sum of i1 and i2.

The neural network is the same Convolutional Neural Network (CNN) used in (Manhaeve

et al., 2018).

The theory for this problem consists of the following clause for l ∈ {0, . . . , 18}, where

sum(l) represents “the sum of i1 and i2 is l” and pred(n1, n2) represents “the neural

network predicts i1 and i2 as n1 and n2 respectively”:

¬sum(l) ∨
∨

n1,n2∈{0,...,9}:
n1+n2=l

pred(n1, n2).

This theory contains 19 + 100 = 119 atoms for sum/1 and pred/2 respectively. We con-

struct the matrix C ∈ {−1, 0, 1}19×119, where each row represents a clause. For instance,

the row for the clause ¬sum(1) ∨ pred(0, 1) ∨ pred(1, 0) is a vector in {−1, 0, 1}1×119

containing a single −1 for atom sum(1), two 1s for atoms pred(0, 1) and pred(1, 0), and

116 0s.

Vectors f and v are in {0, 1}119 constructed from each data instance 〈i1, i2, l〉. The fact

vector f contains a single 1 for atom sum(l) (ground truth label) and 118 0s. To obtain

1In case the length of x is less than n, we pad x with 0s for all the atoms that are not related to NN output.
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the prediction vector v, we (i) feed images i1,i2 into the CNN (with softmax at the last

layer) from (Manhaeve et al., 2018) to obtain the outputs x1,x2 ∈ [0, 1]10 (consisting of

probabilities), (ii) construct the vector x ∈ [0, 1]100 (for 100 atoms of pred/2) such that

x[10i+ j] is x1[i]×x2[j] for i, j ∈ {0, . . . , 9}, (iii) update x as the concatenation of x and

{0}19, and (iv) finally, let v = f + 1{0}(f)� bp(x).

Using C, v, and f , we define the CNF loss Lcnf (C,v, f) as follows:

Lf = C� f (4.2)

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v) (4.3)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
(4.4)

unsat = prod(1− Lv) (4.5)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv) (4.6)

Ldeduce = sum(deduce� unsat) (4.7)

Lunsat = avg(1{1}(unsat)� unsat) (4.8)

Lsat = avg(1{0}(unsat)� keep) (4.9)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat (4.10)

where prod(X), sum(X), and avg(X) compute the product, sum, and average of the ele-

ments inX along its last dimension. 2 Although these equations may look complex, it helps

to know that they use the form 1{k}(X1)�X2, where the indicator function 1{k}(X1) can

be seen as a constant that is multiplied to a trainable variable X2. Take equation (4.8) as an

example. To minimize Lunsat, the NN parameters will be updated towards making unsat[i]

to be 0 whenever 1{1}(unsat) is 1, i.e., towards making unsatisfied clauses satisfied.

2The aggregated dimension is “squeezed,” which is the default behavior in PyTorch aggregate functions

(keepdim is False).
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In equations (4.2) and (4.3), f and v are treated as matrices in {0, 1}1×n to have element-

wise multiplication (with broadcasting) with a matrix in {−1, 0, 1}m×n. Take equation (4.2)

as an example, Lf [i, j] = C[i, j] × f [j]. Lf is the matrix in {−1, 0, 1}m×n such that (i)

Lf [i, j] = 1 iff clause i contains literal pj and pj ∈ F ; (ii) Lf [i, j] = −1 iff clause i

contains literal ¬pj and pj ∈ F ; (iii) otherwise, Lf [i, j] = 0.

Lv is the matrix in {0, 1}m×n such that Lv[i, j] = 1 iff clause i contains a literal (pj or

¬pj) for atom pj and this literal is TRUE under v.

In equations (4.4), (4.5), and (4.6), sum(C�C) is a vector in Nm representing in each

clause the number of literals, and sum(1{−1}(Lf )) is a vector in Nm representing in each

clause the number of literals that are FALSE under F (i.e., the number of literals of the form

¬p such that p ∈ F ). Consequently, deduce is a vector in {0, 1}m where deduce[i] is 1

iff clause i has all but one literal being FALSE under F . If C ∪ F is satisfiable and a clause

has all but one literal being FALSE under F , then we can safely deduce that the remaining

literal is TRUE. For instance, in a clause for Sudoku

¬a(1, 1, 9) ∨ ¬a(1, 2, 9), (4.11)

if a(1, 1, 9) is in the ground-truth label (i.e., in F ) but a(1, 2, 9) is not, we can safely deduce

¬a(1, 2, 9) is true. It follows that such a clause is always a Horn clause. Intuitively, the

vector deduce represents the clauses that such deduction can be applied given F .

The vector unsat ∈ {0, 1}m indicates which clause is not satisfied by the truth assign-

ment v, where unsat[i] is 1 iff v does not satisfy the i-th clause. The vector keep ∈ {0}m

consists ofm zeros while its gradient w.r.t. v consists of non-zeros. Intuitively, the gradient

of keep tries to keep the current predictions v in each clause.

In equations (4.7), (4.8), and (4.9), Ldeduce ∈ N represents the number of clauses that

can deduce a literal given F and are not satisfied by v. The vector 1{1}(unsat) ∈ {0, 1}m

(and 1{0}(unsat), resp.) indicates the clauses that are not satisfied (and are satisfied, resp.)
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by v. Intuitively, for all clauses, minimizing Lunsat makes the neural network change its

predictions to decrease the number of unsatisfied clauses. In contrast, minimizing Lsat

makes the neural network more confident in its predictions in the satisfied clauses. We use

avg instead of sum in equations (4.8) and (4.9) to ensure that the gradients from Lunsat and

Lsat do not overpower those from Ldeduce. Formal statements of these intuitive explanations

follow in the next section.

For any neural network output x consisting of probabilities, let xr denote the raw value

of x before the activation function (e.g., softmax or sigmoid) in the last layer. Without

restriction, the value xr may vary in a large range when trained with STE. When such an

output is fed into softmax or sigmoid, it easily falls into a saturation region of the activation

function (Tang et al., 2017). To resolve this issue, we include another loss function to bound

the scale of xr:

Lbound(x) = avg(xr � xr).

To enforce constraints, we add the weighted sum of Lcnf (C,v, f) and Lbound(x) to the

baseline loss (if any), where the weight of each loss is a hyperparameter. We call this way

of semantic regularization the CL-STE (Constraint Loss via STE) method.

Example 7 Continued. Given the matrix C for the CNF theory, a data instance 〈i1, i2, l〉,

the NN outputs x1,x2 for i1, i2, and the vectors f ,v as constructed in Example 7, the total

loss function used for mnistAdd problem is

L = Lcnf (C,v, f) +
∑

x∈{x1,x2}

0.1×Lbound(x).

4.2.2 Properties of Constraint Loss and Its Gradients

Proposition 3 shows the relation between Ldeduce, Lunsat, and Lsat components in the

constraint loss Lcnf and its logical counterpart.
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Proposition 3 Given a theory C, a set F of atoms, and a truth assignment v such that

v |= F , let C, f ,v denote their matrix/vector representations, respectively. LetCdeduce ⊆ C

denote the set of Horn clauses H in C such that all but one literal in H are of the form ¬p

such that p ∈ F . 3 Then

• the minimum values of Ldeduce, Lunsat, Lsat, and Lcnf (C,v, f) are 0;

• v |= Cdeduce iff Ldeduce is 0;

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Clause (4.11) is an example clause in Cdeduce. There could be many other ways to

design Lcnf (C,v, f) to satisfy the properties in Proposition 3. Propositions 4 and 5 below

justify our design choice.

Proposition 4 Given a theoryC withm clauses and n atoms and a set F of atoms such that

C ∪F is satisfiable, let C, f denote their matrix/vector representations, respectively. Given

a neural network output x ∈ [0, 1]n denoting probabilities, we construct v = f +1{0}(f)�

bp(x) and a truth assignment v such that v(pj) = TRUE if v[j] is 1, and v(pj) = FALSE

if v[j] is 0. Let Cdeduce ⊆ C denote the set of Horn clauses H in C such that all but one

literal in H are of the form ¬p where p ∈ F . Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce
∂x[j]

, ∂Lunsat
∂x[j]

, and ∂Lsat
∂x[j]

are zeros;

3This implies that the remaining literal is either an atom or ¬p such that p 6∈ F .
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2. if pj 6∈ F ,

∂Ldeduce
∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj;

c if c > 0 clauses in Cdeduce

contain literal ¬pj;

0 otherwise;

∂Lunsat
∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat
∂x[j]

iSTE
≈


− c3
m

if v |= pj

c3
m

if v 6|= pj ,

where
iSTE
≈ stands for the equivalence of gradients assuming iSTE; c1 (and c2, resp.)

is the number of clauses in C that are not satisfied by v and contain pj (and ¬pj ,

resp.); c3 is the number of clauses in C that are satisfied by v and contain pj or ¬pj .

Intuitively, Proposition 4 ensures the following properties of the gradient ∂Lcnf (C,v,f)

∂x[j]
,

which consists of ∂Ldeduce
∂x[j]

, ∂Lunsat
∂x[j]

, and ∂Lsat
∂x[j]

.

P1. If we know for sure that pj is TRUE (pj ∈ F ), these gradients w.r.t. x[j] (real values

corresponding to pj) are 0, so they do not affect the truth value of pj .

P2. Otherwise (F does not tell whether pj is TRUE),

1. the gradient ∂Ldeduce
∂x[j]

is negative (positive, resp.) to increase (decrease, resp.) the

value of x[j] by the gradient descent if C ∪ F entails pj (¬pj , resp.);

2. the gradient ∂Lunsat
∂x[j]

is negative (positive resp.) to increase (decrease, resp.) the value

of x[j] by the gradient descent if, among all unsatisfied clauses, more clauses contain

pj than ¬pj (¬pj than pj , resp.);
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3. the gradient ∂Lsat
∂x[j]

is negative (positive resp.) to increase (decrease, resp.) the value

of x[j] by the gradient descent if v |= pj (v 6|= pj , resp.) and there exist satisfied

clauses containing literal pj or ¬pj .

Intuitively, bullet 1 in P2 simulates a deduction step, which is always correct, while

bullets 2 and 3 simulate two heuristics: “we tend to believe a literal if more unsatisfied

clauses contain this literal than its negation” and “we tend to keep our prediction on an

atom if many satisfied clauses contain this atom.” This justifies another property below.

P3. The sign of the gradient ∂Lcnf
∂x[j]

is the same as the sign of ∂Ldeduce
∂x[j]

when the latter

gradient is non-zero.

Example 8 Consider the theory C below with m = 2 clauses and 3 atoms

¬a ∨ ¬b ∨ c

¬a ∨ b

and consider the set of given facts F = {a}. They are represented by matrix C =−1 −1 1

−1 1 0

 and vector f = [1, 0, 0]. Suppose a neural network predicts x = [0.3, 0.1, 0.9]

as the probabilities of the 3 atoms {a, b, c}.

With the above matrix and vectors, we can compute

bp(x) = [0, 0, 1],

v = f + 1{0}(f)� bp(x) = [1, 0, 1].

From v, we construct the truth assignment v = {a = TRUE, b = FALSE, c = TRUE}.

Clearly, v satisfies the first clause but not the second one. Given F = {a}, we see Cdeduce

is ¬a ∨ b .

According to Proposition 4,

∂Ldeduce
∂x

iSTE
≈ [0,−1, 0],

∂Lunsat
∂x

iSTE
≈ [0,−1

2
, 0],

∂Lsat
∂x

iSTE
≈ [0,

1

2
,−1

2
],
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∂Lcnf
∂x

=
∂Ldeduce
∂x

+
∂Lunsat
∂x

+
∂Lsat
∂x

iSTE
≈ [0,−1,−1

2
].

Intuitively, given C, F , and the current truth assignment v, (P1) we know a is TRUE

(a ∈ F ) thus no need to update it, (P2.1 and P3) we know for sure that the prediction

for b should be changed to TRUE by deduction on clause ¬a ∨ b and the given fact

F = {a}, (P2.3) we tend to strengthen our belief in c being TRUE due to the satisfied

clause ¬a ∨ ¬b ∨ c .

The proposition also holds with another binarization function b(x).

Proposition 5 Proposition 4 still holds for x ∈ Rn and v = f + 1{0}(f)� b(x).

4.3 Evaluation of CL-STE

We conduct an experimental evaluation to answer the following questions.

Q1 Is CL-STE more scalable in injecting discrete constraints into neural network learn-

ing than existing neuro-symbolic learning methods?

Q2 Does CL-STE make neural networks learn with no or fewer labeled data by effec-

tively utilizing the given constraints?

Q3 Is CL-STE general enough to overlay constraint loss on different types of neural net-

works to enforce logical constraints and improve the accuracy of existing networks?

Our implementation takes a CNF theory in DIMACS format (the standard format for

input to SAT solvers).4 Since the CL-STE method alone doesn’t have associated symbolic

rules, unlike DeepProbLog, NeurASP, and NeuroLog, in this section, we compare

these methods on the classification accuracy of the trained NNs (e.g., correctly predicting

4All experiments in this section were done on Ubuntu 18.04.2 LTS with two 10-cores CPU Intel(R)

Xeon(R) CPU E5-2640 v4 @ 2.40GHz and four GP104 [GeForce GTX 1080].
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the label of an MNIST image) instead of query accuracy (e.g., correctly predicting the sum

of two MNIST images).

4.3.1 mnistAdd Revisited

We introduced the CNF encoding and the loss function for the mnistAdd problem in

Example 7. The problem was used in (Manhaeve et al., 2018) and Chapter 3 as a bench-

mark.

Figure 4.3: Comparison on mnistAdd

Figure 4.3 compares the MNIST digit classification accuracy of neural networks trained

by different methods on a single epoch of 30,000 addition data from (Manhaeve et al.,

2018). “CL-STE(n)” denotes our method with bp(x) and iSTE using a batch of size n. As

we see, DeepProbLog, NeurASP, and CL-STEwith a batch size of 1 could quickly con-

verge to near 100% test accuracy. Training time-wise, CL-STE outperforms the other ap-

proaches since it does not need to generate arithmetic circuits for every training instance as

in DeepProbLog or enumerate all models as in NeurASP. Also, while DeepProbLog

and NeurASP do not support batch training, CL-STE could leverage the batch training

to reduce the training time to 22s with a batch size of 16 (denoted by CL-STE(16)). We

observe that increasing the batch size in CL-STE also increases the number of parameter
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Table 4.1: Experiments on mnistAdd

mnistAdd mnistAdd2 mnistAdd3

DeepProbLog 98.36% 2565s 97.57% 22699s timeout

NeurASP 97.87% 292s 97.85% 1682s timeout

CL-STE 97.48% 22s 98.12% 92s 97.78% 402s

updates for convergence, which we could decrease by using batch normalization as shown

in the blue line denoted by CL-STE(16)-BN.

Furthermore, we apply CL-STE to the variants of mnistAdd by training with two-digit

sums (mnistAdd2 (Manhaeve et al., 2018)) and three-digit sums (mnistAdd3). Table 4.1

shows that the CL-STE method scales much better than DeepProbLog and NeurASP.

The time and accuracy are reported for a single epoch of training, where the cutoff time is

24 hours after which we report “timeout.”

4.3.2 Benchmarks from (Tsamoura et al., 2021)

The following are benchmark problems from (Tsamoura et al., 2021). Like the

mnistAdd problem, labels are not immediately associated with the data instances but with

the results of logical operations applied to them.

add2x2 The input is a 2× 2 grid of digit images. The output is the four sums of the pairs

of digits in each row/column. The task is to train a CNN for digit classification.

apply2x2 The input is three digits and a 2× 2 grid of hand-written math operator images

in {+,−,×}. The output is the four results of applying the two math operators in each

row/column in the grid on the three digits. The task is to train a CNN for math operator

classification.

member(n) The input is a set of n images of digits and a digit in {0, . . . , 9}. The output

is 0 or 1, indicating whether the digit appears in the set of digit images. The task is to train
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Table 4.2: Comparison between CL-STE and Other Approaches: The Numbers in Paren-
theses Are the Times Spent by NeuroLog to Generate All Abductive Proofs.

add2x2 apply2x2 member(3) member(5)

accuracy(%)

DeepProbLog 88.4±0.7 100±0 96.3±0.3 timeout

NeurASP 97.6±0.2 100±0 93.5±0.9 timeout

NeuroLog 97.5±0.4 100±0 94.5±1.5 93.9±1.5

b(x) + iSTE 95.5±0.7 100±0 73.2±9.1 51.1±24.9

b(x) + sSTE 95.7±0.5 100±0 83.2±8.4 88.0±7.1

bp(x) + iSTE 98.0±0.2 100±0 95.5±0.7 95.0±0.5

time(s)

DeepProbLog 1035±71 586±9 2218±211 timeout

NeurASP 142±2 47±1 253±1 timeout

NeuroLog
2400±46 2428±29 427±12 682±40

(1652) (2266) (27) (114)

b(x) + iSTE 80±2 208±1 45±0 177±1

b(x) + sSTE 81±2 214±8 46±1 181±10

bp(x) + iSTE 54±4 112±2 43±3 49±4

a CNN for digit classification.

Table 4.2 compares our method with DeepProbLog, NeurASP, and NeuroLog test

accuracy-wise and training time-wise. Note that, instead of comparing the query accuracy

as in (Tsamoura et al., 2021), we evaluate and compare the NN classification accuracies.

Our experiments agree with (Yin et al., 2019), which proves the instability issue of iSTE

and the convergence guarantees with sSTE in a simple 2-layer CNN. Their experiments

also observe a better performance of b(x)+sSTE over b(x)+iSTE on deep neural networks.
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Our experimental results (especially for member(5) problem) also reveal the instability

issue of b(x)+iSTE and show that b(x)+sSTE achieves higher and more stable accuracy.

Furthermore, we observe that bp(x) works better than b(x) in terms of both accuracy and

time in our experiments. This is because the input x to bp(x) is normalized into probabilities

before binarization, resulting in less information loss (i.e., change in magnitude “bp(x)−x”)

when the neural network accuracy increases.

4.3.3 CNN + Constraint Loss for Sudoku

The following experimental setting from Section 3.4.2 demonstrates unsupervised learn-

ing with NeurASP on textual Sudoku problems. Recall that, given a textual representation

of a Sudoku puzzle (in the form of a 9× 9 matrix where an empty cell is represented by 0),

Park (2018) trained a CNN using 1 million examples and achieved 70% test accuracy using

an “inference trick”. With the same CNN and inference trick, NeurASP achieved 66.5%

accuracy with only 7% data with no supervision (i.e., 70k data instances without labels) by

enforcing semantic constraints in neural network training. In this section, we consider the

same unsupervised learning problem for Sudoku while we represent the Sudoku problem

in CNF and use Lcnf to enforce logical constraints during training.

We use a CNF theory for 9 × 9 Sudoku problems with 93 = 729 atoms and 8991

clauses as described in Section 4.4. This CNF can be represented by a matrix C ∈

{−1, 0, 1}8991×729. The dataset consists of 70k data instances, 80%/20% for training/test-

ing. Each data instance is a pair 〈q, l〉 where q ∈ {0, 1, . . . , 9}81 denotes a 9 × 9 Sudoku

board (0 denotes an empty cell) and l ∈ {1, . . . , 9}81 denotes its solution (l is not used in

NeurASP and our method during training). The non-zero values in q are treated as atomic

facts F and we construct the matrix F ∈ {0, 1}81×9 such that, for i ∈ {1, . . . , 81}, the i-th

row F[i, :] is the vector {0}9 if q[i] = 0 and is the one-hot vector for q[i] if q[i] 6= 0. Then,

the vector f ∈ {0, 1}729 is simply the flattening of F. We feed q into the CNN and obtain the
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Table 4.3: CNN, NeurASP, and CL-STE on Park 70k Sudoku Dataset (80%/20% split) w/
and w/o Inference Trick

Method Supervised Accwo Accw time(m)

Park’s CNN Full 0.94% 23.3% 163

Park’s CNN+NeurASP No 1.69% 66.5% 13230

Park’s CNN+CL-STE No 2.38% 93.7% 813

output x ∈ [0, 1]729. Finally, the prediction v ∈ {0, 1}729 is obtained as f+1{0}(f)�bp(x),

and the total loss function L we used is L = Lcnf (C,v, f) + 0.1× Lbound(x).

Table 4.3 compares the training time and the (whole-board) test accuracies with and

without the inference trick (Accw and Accwo, resp.) using bp(x)+iSTE against NeurASP

and baseline CNN (Park, 2018). In each experiment, the same CNN is trained with only

70k (labeled/unlabeled) data instances from (Yang et al., 2020) with an average of 43 given

digits in a puzzle (min: 26, max: 77). As we can see, our method outperforms NeurASP in

both accuracy and time. Accuracy-wise, the CNN model trained using CL-STE is 27.2%

more accurate than the CNN model trained using NeurASP when we use the inference

trick. Training time-wise, CL-STE is 16 times faster than NeurASP because we directly

encode semantic constraints in a loss function, which saves the time to call a symbolic

engine externally (e.g., CLINGO to enumerate all stable models as in NeurASP).

Table 4.4 compares CNN+CL-STE with SATNet trained on Park 70k and tested on

both Park 70k and Palm Sudoku dataset (Palm et al., 2018). While CNN is less tailored to

logical reasoning than SATNet, our experiment shows that, when it is trained via CL-STE,

it performs better than SATNet.

4.3.4 GNN + Constraint Loss for Sudoku

This section investigates if a GNN training can be improved with the constraint loss

functions with STE by utilizing already known constraints without always relying on the
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Table 4.4: SATNet vs. CNN+CL-STE

Method
Train Data Test

#Given
Test

(Supv) Data Accuracy

SATNet
Park 70k Park 70k 26-77 67.78%

(Full) Palm 17-34 6.76%

CNN+CL-STE
Park 70k Park 70k 26-77 93.70%

(No) Palm 17-34 27.37%

labeled data. We consider the Recurrent Relational Network (RRN) (Palm et al., 2018), a

state-of-the-art GNN for multi-step relational reasoning that achieves 96.6% accuracy for

hardest Sudoku problems by training on 180k labeled data instances. Our focus here is to

make RRN learn more effectively using fewer data by injecting known constraints.

The training dataset in (Palm et al., 2018) contains 180k data instances evenly dis-

tributed in 18 difficulties with 17-34 given numbers. We use a small subset of this dataset

with random sampling. Given a data instance 〈q, l〉 where q ∈ {0, 1, . . . , 9}81 denotes a

9 × 9 Sudoku board and l ∈ {1, . . . , 9}81 denotes its solution, RRN takes q as input and,

after 32 iterations of message passing, outputs 32 matrices of probabilities Xs ∈ R81×9

where s ∈ {1, . . . , 32}; for example, X1 is the RRN prediction after 1 message passing

step.

The baseline loss is the sum of the cross-entropy losses between prediction Xs and label

l for all s.

We evaluate if using constraint loss could further improve the performance of RRN with

the same labeled data. We use the same Lcnf and Lbound defined in CNN (with weights 1

and 0.1, resp.), which are applied to X1 only so that the RRN could be trained to deduce

new digits in a single message passing step. We also use a continuous regularizer Lsum

below to regularize every Xs that “the sum of the 9 probabilities in Xs in the same row/-
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Figure 4.4: Test Accuracy on the Same Randomly Sampled 1k Data from Palm Sudoku
Dataset When Trained with RRN(+STE) with 30k to 60k [L]abeled/[U]nlabeled Data

column/box must be 1”:

Lsum =
∑

s∈{1,...,32}
i∈{row,col,box}

avg((sum(Xi
s)− 1)2).

Here, avg(X) and sum(X) compute the average and sum of all elements in X along its

last dimension; Xrow
s ,Xcol

s ,X
box
s ∈ R81×9 are reshaped copies of Xs such that each row in,

for example, Xrow
s contains 9 probabilities for atoms a(1, C,N), . . . , a(9, C,N) for some

C and N .

Figure 4.4 compares the test accuracy of the RRN trained for 100 epochs under 4 set-

tings: (a) the RRN trained with baseline loss using 30k labeled data; (b) the RRN trained

with both baseline loss and constraint losses (Lsum, Lcnf , and Lbound) using the same 30k

labeled data; (c) the same setting as (b) with additional 30k unlabeled data; (d) same as

(a) with additional 30k labeled data. Comparing (a) and (b) indicates the effectiveness of

the constraint loss using the same number of labeled data; comparison between (b) and

(c) indicates even with the same number of labeled data but adding unlabeled data could

increase the accuracy (due to the constraint loss); comparison between (c) and (d) shows

that the effectiveness of the constraint loss is comparable to adding additional 30k labels.

Figure 4.5 assesses the effect of constraint loss using fixed 10k labeled data and varying
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Figure 4.5: Semi-supervised Learning with RRN+STE on Sudoku Using Only 10k La-
beled Data and Varying Numbers of Unlabeled Data from Palm Dataset for Training and
Using the Same Randomly Sampled 1k Data for Testing

numbers (10k, 30k, 70k) of unlabeled data. We see that the baseline RRN trained with 10k

labeled data ([10k L] RRN) has roughly saturated while the other methods are still slowly

improving the accuracy. Training with the same number of labeled data but adding more

unlabeled data makes the trained RRN achieve higher test accuracy, indicating that the

constraint loss is effective in training even when the labels are unavailable.

Remark. Although the CNN in the previous section seems to show comparable accu-

racies as the RRN in this section, it relies on the inference trick and has to be trained on a

dataset with varying difficulties (e.g., 26-77 givens) to make the inference trick work. The

RRN result does not use the trick, and we find that its learning is more robust. On the other

hand, the RRN could not learn well when there are no labeled data unlike the CNN.

4.3.5 Learning to Solve the Shortest Path Problem

In this section, we evaluate CL-STE on the shortest path problem from Section 3.4.3.

The experiment is about, given a graph and two points, finding the shortest path between

them. We use the same dataset from (Xu et al., 2018) as in Section 3.4.3, but now the

dataset is divided into 80/20 train/test examples.
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Recall that each example is a 4 by 4 grid G = (V,E), where |V | = 16, |E| = 24, two-

terminal (i.e., source and the destination) nodes are randomly picked up from 16 nodes,

and 8 edges are randomly removed from 24 edges to increase the difficulty. The dataset

consists of 1610 data instances, each is a pair 〈i, l〉where i ∈ {0, 1}40 and l ∈ {0, 1}24. The

ones in the first 24 values in i denote the (non-removed) edges in the grid, the ones in the

last 16 values in i denote the terminal nodes, and ones in l denote the edges in the shortest

path.

We define a CNF with 40 atoms and 120 clauses to represent “each terminal node is

connected to exactly one edge in the shortest path”. To start with, let’s identify each node

in the 4 × 4 grid by a pair (i, j) for i, j ∈ {1, . . . , 4} and identity the edge between nodes

(i1, j1) and (i2, j2) as ((i1, j1), (i2, j2)). Then, we introduce the following 2 atoms.

• terminal(i, j) represents that node (i, j) is one of the two terminal nodes.

• sp((i1, j1), (i2, j2)) represents edge ((i1, j1), (i2, j2)) is in the shortest path.

Then, the CNF for the shortest path problem consists of 120 clauses: 16 clauses of the form

¬terminal(i1, j1) ∨
∨
i2,j2:

((i1,j1),(i2,j2))
is an edge

sp((i1, j1), (i2, j2))

for i1, j1 ∈ {1, . . . , 4}, and 104 clauses of the form

¬terminal(i1, j1) ∨ ¬sp((i1, j1), (i2, j2)) ∨ ¬sp((i1, j1), (i3, j3))

for i∗, j∗ ∈ {1, . . . , 4} such that ((i1, j1), (i2, j2)) and ((i1, j1), (i3, j3)) are different edges.

This CNF can be represented by a matrix C ∈ {−1, 0, 1}120×40.

To construct f and v for a data instance 〈i, l〉, the facts f ∈ {0, 1}40 is simply the

concatenation of i[24 :] and {0}24; while the prediction v is a vector in {0, 1}40 obtained as

follows. We (i) feed i into the same MLP from (Xu et al., 2018) and obtain the NN output
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x ∈ [0, 1]24 consisting of probabilities, (ii) extend x with 16 0s (in the beginning) so as to

have a 1-1 correspondence between 40 elements in x and 40 atoms in the CNF, and (iii)

v = f + 1{0}(f)� bp(x).

Finally, the total loss function Lbase used in the baseline is

Lbase = Lcross(x, l)

where Lcross is the cross-entropy loss.

The loss function L used for shortest path problem is

L = Lcross(x, l) + αLcnf (C,v, f) + βLbound(x)

where α = 0.2 and β = 1. We set α = 0.2 in our experiments to balance the gradients

from the CNF loss and cross entropy loss. Indeed, a similar accuracy can be achieved if we

compute α dynamically as gcross
gcnf

where gcnf and gcross are the maximum absolute values in

the gradients ∂Lcnf (C,v,f)

∂x
and ∂Lcross(x,l)

∂x
respectively. Intuitively, the weight α makes sure

that the semantic regularization from CL-STE won’t overwrite the hints from labels.

Figure 4.6: MLP+CL-STE on Shortest Path Problem

Figure 4.6 compares the test accuracy of the same Multi-Layer Perceptron (MLP)

trained by different learning methods during 500 epochs of training (except that the ac-
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curacy for Semantic Loss method is reported for 10k epochs). As we can see, it only took

83s for baseline and 179s for CL-STE to complete all 500 epochs (including the time to

compute training and testing accuracy) since they are all trained on GPU with a batch size

of 32. Besides, CL-STE achieves comparable accuracy to NeurASP with only about 1
10

of

time. The training time of Semantic Loss in Figure 4.6 was recorded when it was trained on

CPU. We re-did the Semantic Loss experiment on GPU with early stopping and found that

it still takes 1032s to achieve the highest accuracy 30.75% after 2900 epochs of training.

4.3.6 Semi-Supervised Learning for MNIST and FASHION Dataset

Xu et al. (2018) show that minimizing semantic loss could enhance semi-supervised

multi-class classification results by enforcing the constraint that a model must assign a

unique label even for unlabeled data. Their method achieves state-of-the-art results on

the permutation invariant MNIST classification problem, a commonly used testbed for

semi-supervised learning algorithms, and a slightly more challenging problem, FASHION-

MNIST.

For both tasks, we apply b(x)+iSTE to the same MLP (without softmax in the last layer)

as in (Xu et al., 2018), i.e., an MLP of shape (784, 1000, 500, 250, 250, 250, 10), where

the output x ∈ R10 denotes the digit/cloth prediction.

The CNF for this problem consists of 46 clauses: 1 clause

pred(i, 0) ∨ · · · ∨ pred(i, 9)

and 45 clauses of the form

¬pred(i, n1) ∨ ¬pred(i, n2)

for n1, n2 ∈ {0, . . . , 9} such that n1 < n2. Intuitively, these 2 clauses define the existence

and uniqueness constraints on the label of image i. This CNF can be represented by the

matrix C ∈ {−1, 0, 1}46×10.
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The vectors f and v are constructed in the same way for both supervised data instance

〈i, l〉 and unsupervised data instance 〈i〉. The facts f is simply {0}10; while the prediction v

is a vector in {0, 1}10 obtained as follows. We (i) feed image i into the CNN and obtain the

outputs x ∈ R10 (consisting of real values not probabilities); and (ii) v = f+1{0}(f)�b(x).

Then, the total loss for unsupervised data instances is defined as

L = Lcnf (C,v, f) + Lbound(x),

which enforces that each image should map to exactly one digit or one cloth type. The total

loss for supervised data instance simply contains L as well as the typical cross-entropy

loss.

We train the network using 100, 500, and 1,000 partially labeled data and full (60,000)

labeled data, respectively. We run experiments for 50k batch updates with a batch size

of 32. Each experiment is repeated 10 times, and we report the mean and the standard

deviation of classification accuracy (%).

Table 4.5: Accuracy on MNIST & FASHION dataset

Method
Number of labeled examples used

100 500 1000 All (60,000)

MNIST (Xu et al.) 85.3±1.1 94.2±0.5 95.8±0.2 98.8±0.1

MNIST (b(x)+iSTE) 84.4±1.5 94.1±0.3 95.9±0.2 98.8±0.1

FASHION (Xu et al.) 70.0±2.0 78.3±0.6 80.6±0.3 87.3±0.2

FASHION (b(x)+iSTE) 71.0±1.2 78.6±0.7 80.7±0.5 87.2±0.1

Table 4.5 shows that the MLP with the CNF loss achieves similar accuracy with the

implementation of semantic loss from (Xu et al., 2018). Time-wise, each experiment using

the method from (Xu et al., 2018) took up about 12 minutes, and each experiment using the

CL-STE method took about 10 minutes. There is not much difference in training time since
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the logical constraints for this task in the implementation of semantic loss (Xu et al., 2018)

are simple enough to be implemented in python scripts without constructing an arithmetic

circuit and inference on it.

4.3.7 Ablation Study with GNN and Constraint Loss for Sudoku

To better analyze the effect of constraint losses on general GNN, in this section, we

apply constraint losses to a publicly available GNN for Sudoku problem.5 The graph for

Sudoku problem consists of 81 nodes, one for each cell in the Sudoku board, and 1620

edges, one for each pair of nodes in the same row, column, or 3 × 3 non-overlapping box.

The GNN consists of an embedding layer, 8 iterations of message passing layers, and an

output layer.

For each data instance 〈q, l〉, the GNN takes q ∈ {0, 1, . . . , 9}81 as input and outputs a

matrix of probabilities X ∈ R81×9 after 8 message passing steps.

The baseline loss Lbaseline is the cross-entropy loss defined on prediction X and label l.

Lbaseline = Lcross entropy(X, l)

The constraint loss Lcl is the same as the total loss in Appendix 4.4.6 where x is the flat-

tening of X.

Lcl = Lcnf (C,v, f) + 0.1× Lbound(x). (4.12)

In addition, we designed the following domain-specific loss functions for Sudoku prob-

lem as semantic regularizers for comparison. Intuitively, Lhint says that “the given digits

must be predicted” and Lsum says that “the sum of the 9 probabilities in X in the same

5The GNN is from https://www.kaggle.com/matteoturla/can-graph-neural-network-solve-sudoku, along

with the dataset.
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row/column/box must be 1”.

Lhint = avg
(
f � (1− bp(x))

)
Lsum =

∑
s∈{1,...,32}

i∈{row,col,box}

avg((sum(Xi
s)− 1)2).

Here, avg(X) and sum(X) compute the average and sum of all elements in X along its

last dimension; Xrow
s ,Xcol

s ,X
box
s ∈ R81×9 are reshaped copies of Xs such that each row in,

for example, Xrow
s contains 9 probabilities for atoms a(1, C,N), . . . , a(9, C,N) for some

C and N .

Figure 4.7: Acc with 30k Dataset under Different Losses

Figure 4.7 shows the test accuracy of the GNN after 20 epochs of training on 30k data

instances (with full supervision) using different loss functions (denoted by subscripts of

losses). It shows monotonic improvement from each loss and the best result is achieved

when we add all losses.

Figure 4.8 further shows the monotonic improvement from each component in

Lcl = Ldeduce + Lsat + Lunsat + 0.1× Lbound

where we split Lcnf (C,v, f) in equation (4.12) into its 3 components. We can see that the

most improvement comes from Ldeduce + 0.1 × Lbound, which aligns with Proposition 4
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Figure 4.8: Acc with 30k Dataset under Different Losses in Lcl

since Ldeduce has dominant gradients that enforces a deduction step. Noticeably, Lbound is

necessary for Ldeduce to bound the size of raw NN output.

Figure 4.9 shows the test accuracy of the GNN after 60 epochs of training on 60k data

instances (with full supervision). We can see that the monotonic improvement from each

loss is kept in the experiments with 60k data instances and the best result is still achieved

when we add all losses. However, the most improvement is from Lsum instead of Lcl. This

is because most semantic information in Lcl are from Ldeduce (i.e., one step deduction from

the given digits), which can be eventually learned by the GNN with more data instances.

4.3.8 Discussion

Regarding Q1, Figure 4.3, Tables 4.1 and 4.2 show that our method achieves compa-

rable accuracy with existing neuro-symbolic formalisms but is much more scalable. Re-

garding Q2, Table 4.3 and Figures 4.4 and 4.5 illustrate our method could be used for

unsupervised and semi-supervised learning by utilizing the constraints underlying the data.

Regarding Q3, we applied constraint loss to MLP, CNN, and GNN, and observed that it

improves the existing neural networks’ prediction accuracy.

As we noted, the gradient computation in other neuro-symbolic approaches, such as
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Figure 4.9: Acc with 60k Dataset under Different Losses

NeurASP, DeepProbLog, and NeuroLog, requires external calls to symbolic solvers

to compute stable models or proofs for every data instance, which takes a long time. These

approaches may give better quality gradients to navigate to feasible solutions, but their

gradient computations are associated with NP-hardness (the worst case exponential size of

SDD, computing all proofs or stable models). In comparison, CL-STE treats each clause

independently and locally to accumulate small pieces of gradients, allowing us to leverage

GPUs and batch training as in the standard deep learning. The method resembles local

search and deduction in SAT, and the gradients may not reflect the global property but

could be computed significantly faster. Indeed, together with the gradient signals coming

from the data, our method works well even when logical constraints are hard to satisfy, e.g.,

in training a neural network to solve Sudoku where a single feasible solution lies among

947 to 964 candidates when 17-34 digits are given.

Constraint loss helps neural networks learn with fewer data, but the state-of-the-art

methods require combinatorial computation to compute gradients. By leveraging STE, we

demonstrate the feasibility of more scalable constraint learning in neural networks. Also,
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we showed that GNNs could learn with fewer (labeled) data by utilizing known constraints.

Based on the formal properties of the CNF constraint loss and the promising initial experi-

ments here, the next step is to apply the method to larger-scale experiments.

We could also consider an extension to weighted constraints. Although we treat all

clauses as equal importance in learning, one can consider assigning weights to clauses so

that more important constraints are prioritized in learning. Assigning weights to loss func-

tions reflects the idea of weighted logics, such as Markov Logic (Richardson and Domin-

gos, 2006).

4.4 CNF and Total Loss

In this section, we explain the CNF and total loss in each domain.

4.4.1 mnistAdd2

In mnistAdd2 problem (Manhaeve et al., 2018), a data instance is a 5-tuple 〈i1, i2, i3, i4,

l〉 such that i∗ are images of digits and l is an integer in {0, . . . , 198} denoting the sum of

two 2-digit numbers i1i2 and i3i4. The task is, given 15k data instances of 〈i1, i2, i3, i4, l〉, to

train a CNN for digit classification given such weak supervision. The CNF for mnistAdd2

consists of the 199 clauses of the form

¬sum(l) ∨
∨

n1,n2,n3,n4∈{0,...,9}:
10(n1+n3)+n2+n4=l

pred(n1, n2, n3, n4)

for l ∈ {0, . . . , 198}. Intuitively, this clause says that “if the sum of i1i2 and i3i4 is l, then

their individual labels n1, n2, n3, n4 must satisfy 10(n1 + n3) + n2 + n4 = l.”

This CNF contains 199 clauses and 104+199 = 10199 atoms for pred/4 and sum/1, re-

spectively. According to the definition, we can construct the matrix C ∈ {−1, 0, 1}199×10199

where each row represents a clause.

To construct f and v for a data instance 〈i1, i2, i3, i4, l〉, the facts f is simply a vector in
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{0, 1}10199 with 10198 0s and a single 1 for atom sum(l); while the prediction v is a vector

in {0, 1}10199 obtained as follows. We (i) feed images i1,i2,i3,i4 into the CNN and obtain

the outputs x1,x2,x3,x4 ∈ R10 (consisting of probabilities); (ii) construct x ∈ R10000

such that its (1000a + 100b + 10c + d)-th element is x1[a] × x2[b] × x3[c] × x4[d] for

a, b, c, d ∈ {0, . . . , 9}; and (iii) v = f + 1{0}(f)� bp(x).

The loss function used for mnistAdd2 problem is

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.01.

4.4.2 mnistAdd using b(x) and iSTE

In mnistAdd problem, a data instance is a 3-tuple 〈i1, i2, l〉 where i1, i2 are 2 images

of digits and l is an integer in {0, . . . , 18} indicating the sum of the 2 digit images. The

propositional signature σ in this problem consists of 139 atoms: 19 atoms of the form

sum(i1, i2, s) for s ∈ {0, . . . , 18}, 20 atoms of the form digit(i, n) for i ∈ {i1, i2} and

for n ∈ {0, . . . , 9}, and 100 atoms of the form conj(i1, n1, i2, n2) for n1, n2 ∈ {0, . . . , 9}

(denoting the conjunction of digit(i1, n1) and digit(i2, n2)). The CNF for this problem

consists of 111 clauses: 19 clauses of the form

¬sum(i1, i2, s) ∨
∨

n1,n2∈{0,...,9}
n1+n2=s

conj(i1, n1, i2, n2) (4.13)

for s ∈ {0, . . . , 18}, 2 clauses of the form

digit(i, 0) ∨ · · · ∨ digit(i, 9) (4.14)

for i ∈ {i1, i2}, and 90 clauses of the form

¬digit(i, n1) ∨ ¬digit(i, n2) (4.15)
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for i ∈ {i1, i2} and for n1, n2 ∈ {0, . . . , 9} such that n1 < n2. Intuitively, clause (4.13) says

that “if the sum of i1 and i2 is s, then we should be able to predict the labels n1, n2 of i1, i2

such that they sum up to s.” Clauses (4.14) and (4.15) define the existence and uniqueness

constraints on the label of i. Note that clauses (4.14) and (4.15) are not needed if we use

bp(x)+iSTE since these constraints will be enforced by the softmax function in the last

layer of the neural network, which is widely and inherently used in most neuro-symbolic

formalisms.

This CNF can be represented by the matrix C ∈ {−1, 0, 1}111×139. To construct f and

v for a data instance 〈i1, i2, l〉, the facts f is simply a vector in {0, 1}139 with 138 0s and

a single 1 for atom sum(i1, i2, l); while the prediction v is a vector in {0, 1}139 obtained

as follows. We (i) feed images i1,i2 into the CNN and obtain the outputs x1,x2 ∈ R10

(consisting of probabilities); (ii) construct x ∈ R139 such that its (10a + b)-th element

is x1[a] × x2[b] for a, b ∈ {0, . . . , 9} and its remaining elements are 0; and (iii) v =

f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L = αLcnf (C,v, f) +
∑

x∈{x1,x2}

βLbound(x)

where α = 1 and β = 0.1.

4.4.3 add2x2

In add2x2 problem, a data instance is a 8-tuple 〈i1, i2, i3, i4, row1, row2, col1, col2〉

where i∗ are 4 images of digits arranged in the following order in a grid

i1 i2

i3 i4 ,

and each row∗ or col∗ is an integer in {0, . . . , 18} denoting the sum of 2 digits on the

specified row/column in the above grid. The task is to train a CNN for digit classification
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given such weak supervision.

For o, o′ ∈ {(i1, i2), (i3, i4), (i1, i3), (i2, i4)}, and for r ∈ {0, . . . , 18} the CNF contains

the following clause:

¬sum(o, o′, r) ∨
∨

i,j∈{0,...,9}
i+j=r

conj(o, i, o′, j).

This clause can be read as “if the sum of o and o′ is r, then o and o′ must be some values i

and j such that i+ j = r.” This CNF contains 4× 19 = 76 clauses and 76 + 4× 10× 10 =

476 atoms (for sum/3 and conj/4, resp.). This CNF can be represented by the matrix

C ∈ {−1, 0, 1}76×476.

To construct f and v for a data instance 〈i1, i2, i3, i4, row1, row2, col1, col2〉, the facts

f is simply a vector in {0, 1}476 with 472 0s and four 1s for atoms sum(i1, i2, row1),

sum(i3, i4, row2), sum(i1, i3, col1), and sum(i2, i4, col2); while the prediction v is a vec-

tor in {0, 1}476 obtained as follows. We (i) feed images i1,i2,i3,i4 into the CNN and obtain

the outputs x1,x2,x3,x4 ∈ R10 (consisting of probabilities); (ii) construct x ∈ R476 as the

concatenation of 〈v1,v2,v3,v4, {0}76〉 where

v1 = xT1 · x2, v2 = xT3 · x4,

v3 = xT1 · x3, v4 = xT2 · x4;

and (iii) v = f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.1.

4.4.4 apply2x2

In apply2x2 problem, a data instance is a 11-tuple 〈d1, d2, d3, o11, o12, o21, o22, row1,

row2, col1, col2〉where d∗ are digits in {0, . . . , 9}, o∗ are 4 images of operators in {+,−,×}
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arranged in the following order in a grid

o11 o12

o21 o22 ,

and each row∗ or col∗ is an integer denoting the value of the formula (e.g., (4× 7)− 9)

(d1 o1 d2) o2 d3 (4.16)

where (o1, o2) ∈ {(o11, o12), (o21, o22), (o11, o21), (o12, o22)} denotes the two operators on

the specified row/column in the above grid. The task is to train a CNN for digit classifica-

tion given such weak supervision.

We construct a CNF to relate formula (4.16) and its value and will apply the CNF loss

for (o1, o2) ∈ { (o11, o12), (o21, o22), (o11, o21), (o12, o22)}.

For d1, d2, d3 ∈ {0, . . . , 10}, and for all possible r such that (d1 Op1 d2) Op2 d3 = r

for some Op1, Op2 ∈ {+,−,×}, the CNF contains the following clause:

¬apply(d1, o1, d2, o2, d3, r)∨∨
Op1,Op2∈{+,−,×}

(d1 Op1 d2) Op2 d3=r

(operators(o1, Op1, o2, Op2)).

This clause can be read as “if the result is r after applying o1 and o2 to the three digits,

then o1 and o2 must be some values Op1 and Op2 such that (d1 Op1 d2) Op2 d3 = r.”

This CNF contains 10597 clauses and 10606 atoms and can be represented by the matrix

C ∈ {−1, 0, 1}10597×10606.

Given a data instance 〈d1, d2, d3, o11, o12, o21, o22, row1, row2, col1, col2〉, we con-

struct vi, fi ∈ {0, 1}10606 for i ∈ {1, . . . , 4}, one for each 〈o1, o2, r〉 ∈ {〈o11, o12, row1〉,

〈o21, o22, row2〉, 〈o11, o21, col1〉, 〈o12, o22, col2〉}. The detailed steps to construct f and v for

〈o1, o2, r〉 is as follows.

First, the facts f is simply a vector in {0, 1}10606 with 10605 0s and a single 1 for

atom apply(d1, o1, d2, o2, d3, r). Second, the prediction v is a vector in {0, 1}10606 obtained
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as follows. We (i) feed images o1,o2 into the CNN and obtain the outputs x1,x2 ∈ R3

(consisting of probabilities); (ii) construct x ∈ R10606 such that its (3a + b)-th element

is x1[a] × x2[b] for a, b ∈ {0, . . . , 2} and its remaining elements are 0; and (iii) v =

f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L =
∑

i∈{1,...,4}

αLcnf (C,vi, fi) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.1.

Note that, to avoid unnecessary computation, we filter out the clauses in C (by masking

rows in C) that are already evaluated as TRUE given the labels in F (encoded in f ).

4.4.5 member(n)

We take member(3) problem as an example. In member(3) problem, a data instance

is a 5-tuple 〈i1, i2, i3, d, l〉 where i1, i2, i3 are 3 images of digits, d is a digit in {0, . . . , 9},

and l is an integer in {0, 1} indicating whether d appears in the set of digit images. The

task is to train a CNN for digit classification given such weak supervision. The CNF for

this problem consists of the 2 kinds of clauses in table 4.6.

Table 4.6: Clauses in the CNF for member(3) Problem

Clause Reading

¬in(d, 1)∨digit(i1, d)∨digit(i2, d)∨digit(i3, d)

(for d ∈ {0, . . . , 9})

if d appears in the 3 images, then

i1 or i2 or i3 must be digit d

¬in(d, 0) ∨ ¬digit(i, d)

(for d ∈ {0, . . . , 9} and i ∈ {i1, i2, i3})

if d doesn’t appear in the 3 images,

then each image i cannot be digit d

This CNF contains 10 + 10 × 3 = 40 clauses and 3 × 10 + 2 × 10 = 50 atoms for

digit/2 and in/2 respectively. According to the definition, we can construct the matrix C ∈

{−1, 0, 1}40×50 where each row represents a clause. For instance, the row for the clause
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¬in(5, 1) ∨ digit(i1, 5) ∨ digit(i2, 5) ∨ digit(i3, 5) is a row vector in {−1, 0, 1}1×50 con-

taining 46 0s, a single−1 for atom in(5, 1), and three 1s for atoms digit(i1, 5), digit(i2, 5),

digit(i3, 5).

To construct f and v for a data instance 〈i1, i2, i3, d, l〉, the facts f is simply a vector in

{0, 1}50 with 49 0s and a single 1 for atom in(d, l); while the prediction v is a vector in

{0, 1}50 obtained as follows. We (i) feed images i1,i2,i3 into the CNN and obtain the NN

outputs x1,x2,x3 ∈ R10 consisting of probabilities, (ii) construct x ∈ R50 by concatenating

x1,x2,x3 and the vector {0}20, and (iii) v = f + 1{0}(f)� bp(x).

The total loss function is

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x3}

βLbound(x)

where α = 1 and β = 0.1.

4.4.6 Sudoku

We use a typical CNF for 9×9 Sudoku problem. The CNF is defined on a propositional

signature σ = {a(R,C,N) | R,C,N ∈ {1, . . . , 9}} where a(R,C,N) represents “digit N

is assigned at row R column C”. The CNF consists of the following 1 +
(

9
2

)
= 37 clauses

for each of the 4× 9× 9 = 324 different sets A of atoms

∨
p∈A

p

¬pi ∨ ¬pj (for pi, pj ∈ A and i < j)

where the 4 × 9 × 9 definitions of A can be split into the following 4 categories, each

consisting of 9× 9 definitions.

1. (UEC on row indices)

For C,N ∈ {1, . . . , 9}, A is the set of atoms {a(1, C,N), . . . , a(9, C,N)}.
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2. (UEC on column indices)

For R,N ∈ {1, . . . , 9}, A is the set of atoms {a(R, 1, N), . . . , a(R, 9, N)}.

3. (UEC on 9 values in each cell)

For R,C ∈ {1, . . . , 9}, A is the set of atoms {a(R,C, 1), . . . , a(R,C, 9)}.

4. (Optional: UEC on 9 cells in the same 3× 3 box)

For B,N ∈ {1, . . . , 9}, A is the set of atoms {a(R1, C1, N), . . . , a(R9, C9, N)} such

that the 9 cells (Ri, Ci) for i ∈ {1 . . . , 9} are the 9 cells in the B-th box in the 9× 9

grid for value N . Note that the clauses in bullet 4 are optional under the setting

bp(x)+iSTE since they are already enforced by the softmax function used in the last

layer to turn NN output to probabilities.

This CNF can be represented by a matrix C ∈ {−1, 0, 1}8991×729. The dataset in

the CNN experiments consists of 70k data instances, 20% supervised for testing, and

80% unsupervised for training. Each unsupervised data instance is a single vector

q ∈ {0, 1, . . . , 9}81 representing a 9 × 9 Sudoku board (0 denotes an empty cell).

The non-zero values in q are treated as atomic facts F and we construct the matrix

F ∈ {0, 1}81×9 such that, for i ∈ {1, . . . , 81}, the i-th row F[i, :] is the vector {0}9 if

q[i] = 0 and is the one-hot vector for q[i] if q[i] 6= 0. Then, the vector f ∈ {0, 1}729

is simply the flattened version of F. We feed q into the CNN and obtain the output

x ∈ R729 consisting of probabilities. The prediction v ∈ {0, 1}729 is obtained as

f + 1{0}(f)� bp(x).

Then, the total loss function L used to train the CNN for Sudoku is

L = αLcnf (C,v, f) + βLbound(x)

where α = 1 and β = 0.1.
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4.5 Proofs

4.5.1 Proof of Proposition 2

Proposition 2 When K approaches∞ and |g(x)| ≤ c for a constant c, the value of b̃K(x)

converges to b(x).

lim
K→∞

b̃K(x) = b(x)

The gradient ∂b̃
K(x)
∂x

, whenever defined, is exactly the iSTE of ∂b(x)
∂x

if g(x) = 1, or the sSTE

of ∂b(x)
∂x

if

g(x) =


1 if −1 ≤ x ≤ 1

0 otherwise.

[Remark]: Proposition 2 in our paper is similar to proposition 1 in (Kim et al., 2020)

but not the same. For the value of b̃K(x), we don’t have a condition that g′(x) should be

bounded. For the gradient of b̃K(x), we have a stronger statement specific for STEs and

don’t have the condition for K approaching∞.

Proof. Recall the definition of b̃K(x)

b̃K(x) = b(x) + sK(x)g(x)

where K is a constant; sK(x) = Kx−bKxc
K

is a gradient tweaking function whose value is

less than 1
K

and whose gradient is always 1 whenever differentiable; and g(x) is a gradient

shaping function.

[First], we will prove limK→∞ b̃
K(x) = b(x). Since b̃K(x) = b(x) + sK(x)g(x), it’s

equivalent to proving

lim
K→∞

sK(x)g(x) = 0
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Since sK(x) = Kx−bKxc
K

and 0 ≤ Kx − bKxc ≤ 1, we know 0 ≤ sK(x) ≤ 1
K

. Since

|g(x)| ≤ c where c is a constant, − c
K
≤ sK(x)g(x) ≤ c

K
. Thus 0 ≤ limK→∞ s

K(x)g(x) ≤

0, and consequently, limK→∞ s
K(x)g(x) = 0.

[Second], we will prove

• when g(x) = 1 and s(x) = x (i.e., under iSTE),

∂b̃K(x)

∂x
=


∂s(x)
∂x

(if Kx 6= bKxc)

undefined otherwise.

Let’s prove some general properties of the gradients. Since s(x) = x, g(x) = 1, and

sK(x) = Kx−bKxc
K

,

• ∂s(x)
∂x

= 1, ∂g(x)
∂x

= 0, and

• ∂sK(x)
∂x

= 1 whenever differentiable (i.e., whenever Kx 6= bKxc).

Then,

∂b̃K(x)

∂x
=
∂(b(x) + sK(x)g(x))

∂x

=
∂(sK(x)× g(x))

∂x

=
∂sK(x)

∂x

=


1 (if Kx 6= bKxc)

undefined otherwise.

[Third], we will prove

• when s(x) = min(max(x,−1), 1), and g(x) = 1 if −1 ≤ x ≤ 1 and g(x) = 0

otherwise (i.e., under sSTE),

∂b̃K(x)

∂x
=


∂s(x)
∂x

(if Kx 6= bKxc)

undefined otherwise.
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Let’s prove some general properties of the gradients. Since s(x) = min(max(x,−1), 1),

g(x) = 1 if −1 ≤ x ≤ 1 and g(x) = 0 otherwise, and sK(x) = Kx−bKxc
K

,

• ∂s(x)
∂x

= 1 if −1 ≤ x ≤ 1 and ∂s(x)
∂x

= 0 otherwise,

• ∂g(x)
∂x

= 0, and

• ∂sK(x)
∂x

= 1 whenever differentiable (i.e., whenever Kx 6= bKxc).

Then,

∂b̃K(x)

∂x
=
∂(b(x) + sK(x)g(x))

∂x

=
∂(sK(x)× g(x))

∂x

= g(x)× ∂sK(x)

∂x
+ sK(x)× ∂g(x)

∂x

= g(x)× ∂sK(x)

∂x

=


g(x) (if Kx 6= bKxc)

undefined otherwise.

=


∂s(x)
∂x

(if Kx 6= bKxc)

undefined otherwise.

4.5.2 Proof of Proposition 3

Proposition 3 Given a CNF theory C, a set F of atoms, and a truth assignment v such that

v |= F , let C, f ,v denote their matrix/vector representations, respectively. Let Cdeduce ⊆ C

denote the set of Horn clauses H in C such that all but one literal in H are of the form ¬p

where p ∈ F . Then

• the minimum values of Ldeduce, Lunsat, Lsat, and Lcnf (C,v, f) are 0;
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• v |= Cdeduce iff Ldeduce is 0;

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Proof. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat

and the definitions of C, f ,v below.

• the matrix C is in {−1, 0, 1}m×n such that C[i, j] is 1 (−1, resp.) if pj (¬pj , resp.)

belongs to the i-th clause, and is 0 if neither pj nor ¬pj belongs to the clause;

• the vector f is in {0, 1}n to represent F such that f [j] is 1 if pj ∈ F and is 0 otherwise;

and

• the vector v is in {0, 1}n to represent v such that v[j] is 1 if v(pj) = TRUE, and is 0

if v(pj) = FALSE.

We will prove each bullet in Proposition 3 as follows.

1. [First], we will prove
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• Lf is the matrix in {−1, 0, 1}m×n such that (i) Lf [i, j] = 1 iff clause i contains

literal pj and pj ∈ F ; and (ii) Lf [i, j] = −1 iff clause i contains literal ¬pj and

pj ∈ F .

• Lv is the matrix in {0, 1}m×n such that Lv[i, j] = 1 iff clause i contains a literal

(pj or ¬pj) for atom pj and this literal evaluates to TRUE under v.

According to the definition, Lf [i, j] = C[i, j] × f [j]. Since f [j] ∈ {0, 1}, we have

Lf [i, j] = 1 iff “C[i, j] = 1 and f [j] = 1”, and according to the definition of C and

f , we have Lf [i, j] = 1 iff “clause i contains literal pj and pj ∈ F ”. Similarly, we

have Lf [i, j] = −1 iff “C[i, j] = −1 and f [j] = 1” iff “clause i contains literal ¬pj

and pj ∈ F ”.

According to the definition, Lv[i, j] = 1{1}(C)[i, j] × v[j] + 1{−1}(C)[i, j] × (1 −

v[j]). Since 1{1}(C)[i, j] and 1{−1}(C)[i, j] cannot be 1 at the same time and v[j] ∈

{0, 1}, we have Lv[i, j] = 1 iff “C[i, j] = 1 and v[j] = 1” or “C[i, j] = −1 and

v[j] = 0”. According to the definition of C and v, we have Lv[i, j] = 1 iff “clause

i contains literal pj , which evaluates to TRUE under v” or “clause i contains literal

¬pj , which evaluates to TRUE under v”.

[Second], we will prove

• deduce is the vector in {0, 1}m such that deduce[i] = 1 iff clause i has all but

one literal of the form ¬pj such that pj ∈ F .

• unsat is the vector in {0, 1}m such that unsat[i] = 1 iff clause i evaluates to

FALSE under v.

• keep is the vector {0}m.

From the definition of C, the matrix C � C is in {0, 1}m×n such that the element

at position (i,j) is 1 iff clause i contains a literal (pj or ¬pj) for atom pj . Since
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sum(X) computes the sum of elements in each row of matrix X , for i ∈ {1, . . . ,m}

and k ∈ {1, . . . , n}, sum(C �C)[i] = k iff clause i contains k literals. Recall that

we proved that Lf [i, j] = −1 iff “clause i contains literal ¬pj and pj ∈ F ”. Conse-

quently, 1{−1}(Lf ) is the matrix in {0, 1}m×n such that 1{−1}(Lf )[i, j] = 1 iff “clause

i contains literal ¬pj and pj ∈ F ”. As a result, sum(C �C) − sum(1{−1}(Lf )) is

the vector in {0, . . . , n}m such that its i-th element is 1 iff “clause i contains all but

one literal of the form ¬pj such that pj ∈ F ”. Thus deduce is the vector in {0, 1}m

such that deduce[i] = 1 iff “clause i has all but one literal of the form ¬pj such that

pj ∈ F ”.

Since prod(X) computes the product of elements in each row of matrix X , for i ∈

{1, . . . ,m}, unsat[i] =
∏

j∈{1,...,n}
(1 − Lv[i, j]). Recall that we proved that Lv is the

matrix in {0, 1}m×n such that Lv[i, j] = 1 iff clause i contains a literal (pj or ¬pj)

for atom pj and this literal evaluates to TRUE under v. Thus unsat[i] ∈ {0, 1} and

unsat[i] = 1 iff “Lv[i, j] = 0 for j ∈ {1, . . . , n}” iff “for j ∈ {1, . . . , n}, clause i

either does not contain a literal for atom pj or contains a literal for atom pj while this

literal evaluates to FALSE under v” iff “clause i evaluates to FALSE under v”. In other

words, unsat is the vector in {0, 1}m such that unsat[i] = 1 iff clause i evaluates

to FALSE under v.

Since Lv is the matrix in {0, 1}m×n, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},

1{1}(Lv)[i, j] = 1 iff Lv[i, j] = 1 iff (1− Lv[i, j]) = 0. Thus 1{1}(Lv)� (1− Lv) is

the matrix {0}m×n of all zeros. Similarly, 1{0}(Lv)�Lv) is also the matrix {0}m×n.

As a result, keep is the vector {0}m.

[Third], we will prove

• Ldeduce is an integer in {0, . . . ,m} such that Ldeduce = k iff there are k clauses

in Cdeduce that are evaluated to FALSE under v.
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• Lunsat is a number in {0, 1
m
, . . . , m

m
} such that Lunsat = k

m
iff there are k clauses

that are evaluated to FALSE under v.

• Lsat is 0.

Recall that we proved that deduce is the vector in {0, 1}m such that deduce[i] = 1

iff clause i has all but one literal of the form ¬pj such that pj ∈ F ; and unsat is

the vector in {0, 1}m such that unsat[i] = 1 iff clause i evaluates to FALSE under

v. According to the definition of Cdeduce, deduce � unsat is the vector in {0, 1}m

such that its i-th element is 1 iff clause i is in Cdeduce and evaluates to FALSE under

v. As a result, Ldeduce is an integer in {0, . . . ,m} such that Ldeduce = k iff there are

k clauses in Cdeduce that are evaluated as FALSE under v.

Since unsat is the vector in {0, 1}m such that unsat[i] = 1 iff clause i evaluates

to FALSE under v, and since unsat[i] = 1 iff 1{1}(unsat)[i] = 1, we know the

i-th element in 1{1}(unsat) � unsat is 1 iff clause i evaluates to FALSE under

v. Lunsat = avg(1{1}(unsat) � unsat) is a number in {0, 1
m
, . . . , m

m
} such that

Lunsat = k
m

iff there are k clauses that are evaluated as FALSE under v.

Recall that we proved that keep is the vector {0}m. Thus 1{0}(unsat) � keep is

the vector {0}m. Thus Lsat is 0.

[Fourth], we will prove

• the minimum values of Ldeduce, Lunsat, Lsat, Lcnf (C,v, f) are 0.

Recall that we proved that Ldeduce is an integer in {0, . . . ,m}, Lunsat is a number in

{0, 1
m
, . . . , m

m
}, and Lsat is 0. It’s obvious that the minimum values of Ldeduce, Lunsat,

and Lsat are 0. Since (i) Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat, (ii) Ldeduce = 0

when all clauses in Cdeduce are evaluated to TRUE under v, and (iii) Lunsat = 0 when

all clauses in C are evaluated to TRUE under v, the minimum value of Lcnf (C,v, f)
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is 0 and is achieved when all clauses in C are evaluated to TRUE under v.

2. We will prove

• v |= Cdeduce iff Ldeduce is 0.

Recall that we proved that Ldeduce is an integer in {0, . . . ,m} such that Ldeduce = k

iff there are k clauses in Cdeduce that are evaluated as FALSE under v. Then Ldeduce is

0 iff “there is no clause in Cdeduce that evaluates to FALSE under v” iff “every clause

in Cdeduce evaluates to TRUE under v” iff v |= Cdeduce.

3. We will prove

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Recall that we proved that Lunsat is a number in {0, 1
m
, . . . , m

m
} such that Lunsat = k

m

iff there are k clauses that are evaluated as FALSE under v. Then Lunsat is 0 iff “there

is no clause in C that evaluates to FALSE under v” iff v |= C.

Assume Lunsat is 0. Then “there is no clause in C that evaluates to FALSE under

v”. Consequently, “there is no clause in Cdeduce that is evaluated to FALSE under v”.

Recall that we proved that Ldeduce is an integer in {0, . . . ,m} such that Ldeduce = k

iff there are k clauses in Cdeduce that are evaluated as FALSE under v. Then Ldeduce is

0. Since Lsat is 0, Lcnf (C,v, f) is 0.

Assume Lcnf (C,v, f) is 0, which is the minimum value Lcnf can take. It is easy to

see that Lunsat must be 0.
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4.5.3 Proof of Proposition 4

Proposition 4 Given a CNF theory C of m clauses and n atoms and a set F of atoms such

that C ∪ F is satisfiable, let C, f denote their matrix/vector representations, respectively.

Given a neural network output x ∈ [0, 1]n denoting probabilities, we construct v = f +

1{0}(f)� bp(x) and a truth assignment v such that v(pj) = TRUE if v[j] is 1, and v(pj) =

FALSE if v[j] is 0. Let Cdeduce ⊆ C denote the set of Horn clauses H in C such that all but

one literal in H are of the form ¬p and p ∈ F . Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce
∂x[j]

, ∂Lunsat
∂x[j]

, and ∂Lsat
∂x[j]

are zeros;

2. if pj 6∈ F ,

∂Ldeduce
∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj;

c if c > 0 clauses in Cdeduce

contain literal ¬pj;

0 otherwise;

∂Lunsat
∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat
∂x[j]

iSTE
≈


− c3
m

if v |= pj ,

c3
m

if v 6|= pj .

where
iSTE
≈ stands for the equivalence of gradients under iSTE; c1 (and c2, resp.) is

the number of clauses in C that are not satisfied by v and contain pj (and ¬pj , resp.);

c3 is the number of clauses in C that are satisfied by v and contain pj or ¬pj .

Proof. We will prove each bullet in Proposition 4 as follows.
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1. Take any k ∈ {1, . . . , n}, let’s focus on x[k] and compute the gradient of L ∈

{Ldeduce, Lunsat, Lsat} to it with iSTE. According to the chain rule and since

∂v[i]
∂bp(x)[j]

= 0 for i 6= j, we have

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
× ∂bp(x[k])

∂x[k]
.

Under iSTE, the last term ∂bp(x[k])

∂x[k]
is replaced with ∂s(x[k])

∂x[k]
= ∂x[k]

∂x[k]
= 1. Thus

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
× ∂bp(x[k])

∂x[k]

iSTE
≈ ∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
(under iSTE)

=
∂L

∂v[k]
×
∂(f [k] + 1{0}(f [k])× bp(x[k]))

∂bp(x[k])

=


∂L
∂v[k]

if f [k] = 0,

0 if f [k] = 1.

Since f [k] = 1 iff pk ∈ F , if pk ∈ F , then all of ∂Ldeduce
∂x[k]

, ∂Lunsat
∂x[k]

, and ∂Lsat
∂x[k]

are zeros.

2. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat
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We know pk 6∈ F iff f [k] = 0. As proved in the first bullet, for L ∈ {Ldeduce, Lunsat,

Lsat}, if pk 6∈ F , then ∂L
∂x[k]

iSTE
≈ ∂L

∂v[k]
. We further analyze the value of ∂L

∂v[k]
for each

L under the condition that f [k] = 0.

[Ldeduce] According to the definition,

Ldeduce =
∑

i∈{1,...,m}

(
deduce[i]× unsat[i]

)
=

∑
i∈{1,...,m}

(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂Ldeduce
∂v[k]

=
∑

i∈{1,...,m}

∂
(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂v[k]

=
∑

i∈{1,...,m}

(∂deduce[i]

∂v[k]
×

∏
j∈{1,...,n}

(1− Lv[i, j])+

deduce[i]×
∂

∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
Since deduce is the result of an indicator function, ∂deduce[i]

∂v[k]
= 0. Then,

∂Ldeduce
∂v[k]

=
∑

i∈{1,...,m}

(
deduce[i]×

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

)
.

Let U ⊆ {1, . . . ,m} denote the set of indices of all clauses in Cdeduce. Since

deduce[i] = 1 iff i ∈ U ,

∂Ldeduce
∂v[k]

=
∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Let Gi,k denote
∂

∏
j∈{1,...,n}

(1−Lv [i,j])

∂v[k]
. Then

∂Ldeduce
∂v[k]

=
∑
i∈U

Gi,k.
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Let’s analyze the value of Gi,k where i ∈ U and k ∈ {1, . . . , n} such that f [k] = 0.

According to the product rule below,

d

dx

[
k∏
i=1

fi(x)

]
=

(
k∏
i=1

fi(x)

)(
k∑
i=1

f ′i(x)

fi(x)

)

we have

Gi,k =

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

Since Lv[i, j] = 1{1}(C)[i, j]× v[j] + 1{−1}(C)[i, j]× (1− v[j]), we know

(a) for j ∈ {1, . . . , n} such that j 6= k, ∂(1−Lv [i,j])
∂v[k]

= 0 and ∂Lv [i,j]
∂v[k]

= 0;

(b) when clause i doesn’t contain a literal for atom pk, ∂(1−Lv [i,k])
∂v[k]

= 0 and ∂Lv [i,k]
∂v[k]

=

0;

(c) when clause i contains literal pk,
∂(1−Lv [i,k])

∂v[k]
= −1 and ∂Lv [i,k]

∂v[k]
= 1;

(d) when clause i contains literal ¬pk, ∂(1−Lv [i,k])
∂v[k]

= 1 and ∂Lv [i,k]
∂v[k]

= −1.

We will refer to the above 4 bullets with their identifiers.

Since i ∈ U , we know clause i has all but one literal of the form ¬pj such that

pj ∈ F . Since f [k] = 0, we know pk 6∈ F . Then, when clause i contains literal

pk or ¬pk, all other literals in clause i must be of the form ¬pj where pj ∈ F . For

every literal ¬pj in clause i where j 6= k, we know pj ∈ F , thus f [j] = 1; since

v = f + 1{0}(f) � bp(x), then v[j] = 1; consequently, the literal ¬pj evaluates to

FALSE under v. Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains

a literal (pj or ¬pj) for atom pj and this literal evaluates to TRUE under v, then we

know
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• when i ∈ U , f [k] = 0, and clause i contains literal pk or ¬pk, Lv[i, j] = 0 for

j ∈ {1, . . . , n} such that j 6= k.

Then we have

Gi,k =

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∂(1−Lv [i,k])
∂v[k]

1− Lv[i, k]
(due to (a))

=
∂(1− Lv[i, k])

∂v[k]
×

∏
j∈{1,...,n}

j 6=k

(1− Lv[i, j])

=



0 if clause i doesn’t contain a literal

for atom pk (due to (b))

−1 if clause i contains a literal pk (due to (c))

1 if clause i contains a literal ¬pk (due to (d))

Since i ∈ U and f [k] = 0, when clause i contains a literal lk for atom pk, we know

F 6|= lj for every literal lj in clause i such that j 6= k. Since C ∪ F is satisfiable,

we know C ∪F |= lk and there cannot be two clauses in Cdeduce containing different

literals pk and ¬pk. Thus, when f [k] = 0,

∂Ldeduce
∂v[k]

=
∑
i∈U

Gi,k

=


−c if c > 0 clauses in Cdeduce contain literal pk,

c if c > 0 clauses in Cdeduce contain literal ¬pk,

0 otherwise.

Note that the first 2 cases above are disjoint since there cannot be two clauses in

Cdeduce containing different literals pk and ¬pk.
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Finally, if pk 6∈ F ,

∂Ldeduce
∂x[k]

iSTE
≈ ∂Ldeduce

∂v[k]

=



−c if c > 0 clauses in Cdeduce

contain literal pk;

c if c > 0 clauses in Cdeduce

contain literal ¬pk;

0 otherwise;

[Lunsat] According to the definition,

Lunsat =avg(1{1}(unsat)� unsat)

=
1

m

∑
i∈{1,...,m}

(
1{1}(unsat[i])×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

Recall that we proved that 1{1}(unsat)[i] ∈ {0, 1} is the output of an indicator func-

tion whose value is 1 iff clause i evaluates to FALSE under v. Let U ⊆ {1, . . . ,m}

denote the set of indices of clauses in C that are evaluated as FALSE under v.

Lunsat =
1

m

∑
i∈U

( ∏
j∈{1,...,n}

(1− Lv[i, j])
)

Then the gradient of Lunsat w.r.t. v[k] is

∂Lunsat
∂v[k]

=
1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains a literal (pj or

¬pj) for atom pj and this literal evaluates to TRUE under v. When i ∈ U , clause

i evaluates to FALSE under v. Thus when i ∈ U , all literals in clause i must be

evaluated as FALSE under v, and consequently, Lv[i, j] = 0 for all j ∈ {1, . . . ,m}.
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Then

∂Lunsat
∂v[k]

=
1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
=

1

m

∑
i∈U

(∂(1− Lv[i, k])

∂v[k]

)
(due to (a))

=
c2 − c1

m
(due to (b), (c), (d))

where c1 (and c2, resp.) is the number of clauses in U that contain pk (and ¬pk, resp.).

Finally, if pk 6∈ F ,

∂Lunsat
∂x[k]

iSTE
≈ ∂Lunsat

∂v[k]
=
c2 − c1

m

where c1 (and c2, resp.) is the number of clauses in C that are not satisfied by v and

contain pk (and ¬pk, resp.).

[Lsat] Recall that we proved that 1{0}(unsat)[i] ∈ {0, 1} is the output of an

indicator function whose value is 1 iff clause i evaluates to TRUE under v. Let

S ⊆ {1, . . . ,m} denote the set of indices of clauses in C that are evaluated as TRUE

under v. Then

Lsat =avg(1{0}(unsat)� keep)

=
1

m

∑
i∈{1,...,m}

(
1{0}(unsat[i])× keep[i]

)
=

1

m

∑
i∈S

keep[i]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])× (1− Lv[i, j])

+ 1{0}(Lv[i, j])× Lv[i, j]
)

Then the gradient of Lsat w.r.t. v[k] is

∂Lsat
∂v[k]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])×

∂(1− Lv[i, j])

∂v[k]
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+ 1{0}(Lv[i, j])×
∂Lv[i, j]

∂v[k]

)
=

1

m

∑
i∈S

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
(due to (a))

=
1

m

∑
i∈S

clause i contains
literal pk

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
+

1

m

∑
i∈S

clause i contains
literal ¬pk

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
(due to (b))

=
1

m

∑
i∈S

clause i contains
literal pk

(
− 1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

)

+
1

m

∑
i∈S

clause i contains
literal ¬pk

(
1{1}(Lv[i, k])− 1{0}(Lv[i, k])

)
(due to (c) and (d))

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains a literal (pj or ¬pj)

for atom pj and this literal evaluates to TRUE under v. It’s easy to check that

• when clause i contains literal pk, the value of −1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

is −1 if v |= pk and is 1 if v 6|= pk;

• when clause i contains literal ¬pk, the value of 1{1}(Lv[i, k])−1{0}(Lv[i, k]) is

−1 if v |= pk and is 1 if v 6|= pk.

Thus

∂Lsat
∂v[k]

=


− c
m

if v |= pk,

c
m

if v 6|= pk.
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where c is the number of clauses in S that contain a literal for atom pk. Finally, if

pk 6∈ F ,

∂Lsat
∂x[k]

iSTE
≈ ∂Lsat

∂v[k]
=


− c
m

if v |= pk,

c
m

if v 6|= pk;

where c is the number of clauses in C that are satisfied by v and contain pk or ¬pk.

4.5.4 Proof of Proposition 5

Proposition 5 Proposition 4 still holds for x ∈ Rn and v = f + 1{0}(f)� b(x).

[Complete Statement] Given a CNF theory C of m clauses and n atoms and a set F

of atoms such that C ∪ F is satisfiable, let C, f denote their matrix/vector representations,

respectively. Given a neural network output x ∈ Rn in logits (i.e., real numbers instead

of probabilities), we construct v = f + 1{0}(f) � b(x) and a truth assignment v such that

v(pj) = TRUE if v[j] is 1, and v(pj) = FALSE if v[j] is 0. Let Cdeduce ⊆ C denote the set

of Horn clauses H in C such that all but one literal in H are of the form ¬p and p ∈ F .

Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce
∂x[j]

, ∂Lunsat
∂x[j]

, and ∂Lsat
∂x[j]

are zeros;

2. if pj 6∈ F ,

∂Ldeduce
∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj;

c if c > 0 clauses in Cdeduce

contain literal ¬pj;

0 otherwise;
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∂Lunsat
∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat
∂x[j]

iSTE
≈


− c3
m

if v |= pj ,

c3
m

if v 6|= pj .

where
iSTE
≈ stands for the equivalence of gradients under iSTE; c1 (and c2, resp.) is

the number of clauses in C that are not satisfied by v and contain pj (and ¬pj , resp.);

c3 is the number of clauses in C that are satisfied by v and contain pj or ¬pj .

Proof. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat

We will prove each bullet in Proposition 5 as follows. This proof is almost the same as

the proof for Proposition 4 since the choice of b(x) v.s. bp(x) doesn’t affect the gradient

computation from Lcnf to x under iSTE.

1. Take any k ∈ {1, . . . , n}, let’s focus on x[k] and compute the gradient of L ∈

{Ldeduce, Lunsat, Lsat} to it with iSTE. According to the chain rule and since ∂v[i]
∂b(x)[j]

=
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0 for i 6= j, we have

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂b(x[k])
× ∂b(x[k])

∂x[k]
.

Under iSTE, the last term ∂b(x[k])
∂x[k]

is replaced with ∂s(x[k])
∂x[k]

= ∂x[k]
∂x[k]

= 1. Thus

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂b(x[k])
× ∂b(x[k])

∂x[k]

iSTE
≈ ∂L

∂v[k]
× ∂v[k]

∂b(x[k])
(under iSTE)

=
∂L

∂v[k]
×
∂(f [k] + 1{0}(f [k])× b(x[k]))

∂b(x[k])

=


∂L
∂v[k]

if f [k] = 0,

0 if f [k] = 1.

Since f [k] = 1 iff pk ∈ F , if pk ∈ F , then all of ∂Ldeduce
∂x[k]

, ∂Lunsat
∂x[k]

, and ∂Lsat
∂x[k]

are zeros.

2. We know pk 6∈ F iff f [k] = 0. As proved in the first bullet, for L ∈ {Ldeduce, Lunsat,

Lsat}, if pk 6∈ F , then ∂L
∂x[k]

= ∂L
∂v[k]

. We further analyze the value of ∂L
∂v[k]

for each L

under the condition that f [k] = 0.

[Ldeduce] According to the definition,

Ldeduce =
∑

i∈{1,...,m}

(
deduce[i]× unsat[i]

)
=

∑
i∈{1,...,m}

(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂Ldeduce
∂v[k]

=
∑

i∈{1,...,m}

∂
(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂v[k]

=
∑

i∈{1,...,m}

(∂deduce[i]

∂v[k]
×

∏
j∈{1,...,n}

(1− Lv[i, j])+

deduce[i]×
∂

∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
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Since deduce is the result of an indicator function, ∂deduce[i]
∂v[k]

= 0. Then,

∂Ldeduce
∂v[k]

=
∑

i∈{1,...,m}

(
deduce[i]×

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

)
.

Let U ⊆ {1, . . . ,m} denote the set of indices of all clauses in Cdeduce. Since

deduce[i] = 1 iff i ∈ U ,

∂Ldeduce
∂v[k]

=
∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Let Gi,k denote
∂

∏
j∈{1,...,n}

(1−Lv [i,j])

∂v[k]
. Then

∂Ldeduce
∂v[k]

=
∑
i∈U

Gi,k.

Let’s analyze the value of Gi,k where i ∈ U and k ∈ {1, . . . , n} such that f [k] = 0.

According to the product rule below,

d

dx

[
k∏
i=1

fi(x)

]
=

(
k∏
i=1

fi(x)

)(
k∑
i=1

f ′i(x)

fi(x)

)

we have

Gi,k =

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

Since Lv[i, j] = 1{1}(C)[i, j]× v[j] + 1{−1}(C)[i, j]× (1− v[j]), we know

(a) for j ∈ {1, . . . , n} such that j 6= k, ∂(1−Lv [i,j])
∂v[k]

= 0 and ∂Lv [i,j]
∂v[k]

= 0;

(b) when clause i doesn’t contain a literal for atom pk, ∂(1−Lv [i,k])
∂v[k]

= 0 and ∂Lv [i,k]
∂v[k]

=

0;

(c) when clause i contains literal pk,
∂(1−Lv [i,k])

∂v[k]
= −1 and ∂Lv [i,k]

∂v[k]
= 1;
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(d) when clause i contains literal ¬pk, ∂(1−Lv [i,k])
∂v[k]

= 1 and ∂Lv [i,k]
∂v[k]

= −1.

We will refer to the above 4 bullets with their identifiers.

Since i ∈ U , we know clause i has all but one literal of the form ¬pj such that

pj ∈ F . Since f [k] = 0, we know pk 6∈ F . Then, when clause i contains literal

pk or ¬pk, all other literals in clause i must be of the form ¬pj where pj ∈ F . For

every literal ¬pj in clause i where j 6= k, we know pj ∈ F , thus f [j] = 1; since

v = f + 1{0}(f) � b(x), then v[j] = 1; consequently, the literal ¬pj evaluates to

FALSE under v. Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains

a literal (pj or ¬pj) for atom pj and this literal evaluates to TRUE under v, then we

know

• when i ∈ U , f [k] = 0, and clause i contains literal pk or ¬pk, Lv[i, j] = 0 for

j ∈ {1, . . . , n} such that j 6= k.

Then we have

Gi,k =

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∂(1−Lv [i,k])
∂v[k]

1− Lv[i, k]
(due to (a))

=
∂(1− Lv[i, k])

∂v[k]
×

∏
j∈{1,...,n}

j 6=k

(1− Lv[i, j])

=



0 if clause i doesn’t contain a literal

for atom pk (due to (b))

−1 if clause i contains a literal pk (due to (c))

1 if clause i contains a literal ¬pk (due to (d))
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Since i ∈ U and f [k] = 0, when clause i contains a literal lk for atom pk, we know

F 6|= lj for every literal lj in clause i such that j 6= k. Since C ∪ F is satisfiable,

we know C ∪F |= lk and there cannot be two clauses in Cdeduce containing different

literals pk and ¬pk. Thus, when f [k] = 0,

∂Ldeduce
∂v[k]

=
∑
i∈U

Gi,k

=


−c if c > 0 clauses in Cdeduce contain literal pk,

c if c > 0 clauses in Cdeduce contain literal ¬pk,

0 otherwise.

Note that the first 2 cases above are disjoint since there cannot be two clauses in

Cdeduce containing different literals pk and ¬pk.

Finally, if pk 6∈ F ,

∂Ldeduce
∂x[k]

iSTE
≈ ∂Ldeduce

∂v[k]

=



−c if c > 0 clauses in Cdeduce

contain literal pk;

c if c > 0 clauses in Cdeduce

contain literal ¬pk;

0 otherwise;

[Lunsat] According to the definition,

Lunsat =avg(1{1}(unsat)� unsat)

=
1

m

∑
i∈{1,...,m}

(
1{1}(unsat[i])×

∏
j∈{1,...,n}

(1− Lv[i, j])
)
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Recall that we proved that 1{1}(unsat)[i] ∈ {0, 1} is the output of an indicator func-

tion whose value is 1 iff clause i evaluates to FALSE under v. Let U ⊆ {1, . . . ,m}

denote the set of indices of clauses in C that are evaluated as FALSE under v.

Lunsat =
1

m

∑
i∈U

( ∏
j∈{1,...,n}

(1− Lv[i, j])
)

Then the gradient of Lunsat w.r.t. v[k] is

∂Lunsat
∂v[k]

=
1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains a literal (pj or

¬pj) for atom pj and this literal evaluates to TRUE under v. When i ∈ U , clause

i evaluates to FALSE under v. Thus when i ∈ U , all literals in clause i must be

evaluated as FALSE under v, and consequently, Lv[i, j] = 0 for all j ∈ {1, . . . ,m}.

Then

∂Lunsat
∂v[k]

=
1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
=

1

m

∑
i∈U

(∂(1− Lv[i, k])

∂v[k]

)
(due to (a))

=
c2 − c1

m

where c1 (and c2, resp.) is the number of clauses in U that contain pk (and ¬pk, resp.).

Finally, if pk 6∈ F ,

∂Lunsat
∂x[k]

iSTE
≈ ∂Lunsat

∂v[k]
=
c2 − c1

m

where c1 (and c2, resp.) is the number of clauses in C that are not satisfied by v and

contain pk (and ¬pk, resp.).

[Lsat] Recall that we proved that 1{0}(unsat)[i] ∈ {0, 1} is the output of an

indicator function whose value is 1 iff clause i evaluates to TRUE under v. Let
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S ⊆ {1, . . . ,m} denote the set of indices of clauses in C that are evaluated as TRUE

under v. Then

Lsat =avg(1{0}(unsat)� keep)

=
1

m

∑
i∈{1,...,m}

(
1{0}(unsat[i])× keep[i]

)
=

1

m

∑
i∈S

keep[i]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])× (1− Lv[i, j]) + 1{0}(Lv[i, j])× Lv[i, j]

)
Then the gradient of Lsat w.r.t. v[k] is

∂Lsat
∂v[k]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])×

∂(1− Lv[i, j])

∂v[k]

+ 1{0}(Lv[i, j])×
∂Lv[i, j]

∂v[k]

)
=

1

m

∑
i∈S

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
(due to (a))

=
1

m

∑
i∈S

clause i contains
literal pk

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
+

1

m

∑
i∈S

clause i contains
literal ¬pk

(
1{1}(Lv[i, k])× ∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])× ∂Lv[i, k]

∂v[k]

)
(due to (b))

=
1

m

∑
i∈S

clause i contains
literal pk

(
− 1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

)

+
1

m

∑
i∈S

clause i contains
literal ¬pk

(
1{1}(Lv[i, k])− 1{0}(Lv[i, k])

)
(due to (c) and (d))
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Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i contains a literal (pj or ¬pj)

for atom pj and this literal evaluates to TRUE under v. It’s easy to check that

• when clause i contains literal pk, the value of −1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

is −1 if v |= pk and is 1 if v 6|= pk;

• when clause i contains literal ¬pk, the value of 1{1}(Lv[i, k])−1{0}(Lv[i, k]) is

−1 if v |= pk and is 1 if v 6|= pk.

Thus

∂Lsat
∂v[k]

=


− c
m

if v |= pk,

c
m

if v 6|= pk.

where c is the number of clauses in S that contain a literal for atom pk. Finally, if

pk 6∈ F ,

∂Lsat
∂x[k]

iSTE
≈ ∂Lsat

∂v[k]
=


− c
m

if v |= pk,

c
m

if v 6|= pk;

where c is the number of clauses in C that are satisfied by v and contain pk or ¬pk.
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Chapter 5

RECURRENT TRANSFORMER

Constraint Satisfaction Problems (CSPs) are about finding values for variables that satisfy

the given constraints. They have been much studied in symbolic AI with the emphasis on

designing efficient algorithms for deductively finding solutions for explicitly stated con-

straints. On the other hand, there are rising interests in CSPs with the deep learning ap-

proach, where the focus is on inductively learning the constraints and solving them in an

end-to-end manner. One of the main methods is graph neural networks (GNNs). For exam-

ple, Recurrent Relational Network (RRN) (Palm et al., 2018) uses message passing over

graph structures to learn logical constraints, achieving high accuracy on Sudoku. On the

other hand, it uses hand-coded information about Sudoku constraints, namely, which vari-

ables are allowed to interact. Moreover, it is limited to textual input. SATNet (Wang et al.,

2019) is a differentiable MAXSAT solver that can infer logical rules and be integrated into

DNNs. SATNet was shown to solve even Visual Sudoku, where the input is a hand-written

Sudoku board. The problem is harder because a model has to learn how to map visual

inputs to symbolic digits without explicit supervision. However, Chang et al. (2020) noted

that the experiment had a label leakage issue. With the proper evaluation, SATNet’s per-

formance on Visual Sudoku dropped to 0%. Moreover, SATNet’s evaluation is limited to

easy puzzles, and it does not perform well on hard puzzles that RRN could solve.

On another aspect, although these models could learn complicated constraints purely

from data, in many cases, (part of) constraints are already known, and exploiting such

deductive knowledge in inductive learning could be helpful for sample-efficient and robust

learning. The problem is challenging, especially if the knowledge is in the form of discrete

constraints, whereas standard deep learning is mainly about continuous and differentiable
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parameter optimization.

This chapter provides a viable solution to the limitations of the above models based on

the Transformer architecture. Transformer-based models have not been shown effective for

CSPs despite their widespread applications in language (Vaswani et al., 2017; Zhang et al.,

2020; Helwe et al., 2021; Li et al., 2020) and vision (Dosovitskiy et al., 2020; Gabeur

et al., 2020). Creswell et al. (2022) asserted that Transformer-based large language models

(LLMs) tend to perform poorly on multi-step logical reasoning problems. In the case of

Sudoku, the typical solving requires about 20 to 60 steps of reasoning. Despite the various

ideas on prompting GPT-3, GPT-3 is not able to solve Sudoku. Nye et al. (2021) note

that LLMs work well for system 1 intuitive thinking but not for system 2 logical thinking.

Given the superiority of other models on CSPs, one might conclude that Transformers are

unsuitable for CSPs.

We find that Transformers needs to incorporate recurrence to successfully apply to

CSPs. The added recurrence encourages the Transformer model to apply multi-step reason-

ing similar to RRNs. Interestingly, this simple change already yields better results than the

other models above and gives several other advantages. The learning is more robust than

SATNet’s. By looking at the learned attention matrices, we could interpret what the Trans-

former has learned. Intuitively, multi-head attention extracts distinct information about the

problem structure. Adding more attention blocks and recurrences tends to make the model

learn better. Analogous to the extension Vision Transformer (Dosovitskiy et al., 2020)

made, our model can be easily extended to process the visual input. Moreover, the model

avoids the symbol grounding problem that SATNet encountered.

In addition, we present a way to inject discrete constraints into Recurrent Transformer

training, borrowing the idea from CL-STE in Chapter 4. We apply this idea to Recurrent

Transformers with some modifications. We note that adding explicit constraint loss to all

recurrent layers helps Transformers learn more effectively. We also add a constraint loss
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to the attention matrix so that constraints can help learn better attention values. Including

these constraint losses in training improves accuracy and lets the Transformer learn with

fewer labeled data (semi-supervised learning).

5.1 CSP

A constraint satisfaction problem (CSP) 1 is defined as 〈X,D,C〉 where X = {X1, . . . ,

Xt} is a set of t logical variables; D = {D1, . . . ,Dt} and each Di is a finite set of domain

values for logical variableXi; and C is a set of constraints. An atom (i.e., value assignment)

is of the form Xi = v where v ∈ Di. A constraint on a sequence 〈Xi, . . . ,Xj〉 of variables

is a mapping: Di × · · · × Dj → {TRUE, FALSE} that specifies the set of atoms that can or

cannot hold at the same time. A (complete) evaluation is a set of t atoms {Xi = v | i ∈

{1, . . . , t}, v ∈ Di}. An evaluation is a solution if it does not violate any constraint in C,

i.e., it maps all constraints to TRUE.

One of the commonly used constraints is the cardinality constraint:

l ≤ |{Xi = vi, . . . ,Xj = vj}| ≤ u (5.1)

where l and u are nonnegative integers denoting bounds, and for k ∈ {i, . . . , j}, Xk ∈ X

and vk ∈ Dk. Cardinality constraint (5.1) is TRUE iff the number of atoms that are true in it

is between l and u. If l = u, constraint (5.1) can be simplified to

|{Xi = vi, . . . ,Xj = vj}| = l (5.2)

which is TRUE iff the number of atoms in the given set is exactly l. If i = j and l = 1,

constraint (5.2) can be further simplified to Xi = vi .

Example 9 (CSP for Sudoku) A CSP for Sudoku puzzle is such that X = {cell1, . . . ,

cell81} denotes all 81 cells in a Sudoku board; D = {D1, . . . ,D81} and Di = {1, . . . , 9}
1https://en.wikipedia.org/wiki/Constraint satisfaction problem
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denotes all possible values in each cell; and C consists of constraints celli = d for each

given digit d at cell i, and constraints

|{celli = d, . . . , cellj = d}| = 1 (5.3)

for d ∈ {1, . . . , 9} and any set {i, . . . , j} of 9 cell indices that belong to the same row/-

column/box, saying that “each digit d should appear exactly once in each row/column/box.”

The solution to the CSP corresponds to the solution to the Sudoku puzzle.

5.2 Model Design

Given a constraint satisfaction problem 〈X,D,C〉 such that, for i ∈ {1, . . . , t}, 1 ≤

|Di| ≤ c for a constant c, the Recurrent Transformer takes as an input the sequence

〈X1, . . . ,Xt〉 of logical variables, and outputs the probability distribution over the values in

the domain Di of each Xi. Let ci be the domain size of Xi. Without loss of generality, we

assume values in Di are represented by their indices, i.e., Di = {1, . . . , ci}. The probability

of Xi = j is given by the j-th value of the output for Xi.

A logical variable Xi is treated as a token whose token embedding is a vector of length

dh encoding the given information about this logical variable (e.g., some numbers, a textual

description, an image, etc). The position embedding of Xi is a randomly initialized vector

of length dh and is to be learned to record data-invariant information for logical variableXi.

Let Etok,Epos ∈ Rt×dh denote the token and position embeddings of t logical variables.

The r-th recurrent step in a Recurrent Transformer with L self-attention blocks and R

recurrences can be formulated as follows (r ∈ {1, . . . , R}):

H(r,0) = H(r−1,L)

H(r,l) = blockl(H
(r,l−1)) ∀l ∈ {1, . . . , L}

X(r,l) = softmax(layer norm(H(r,l)) ·Wout) ∀l ∈ {1, . . . , L}
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where the initial hidden embedding H(0,L) is Etok + Epos and + denotes element-wise

addition; H(r,l) ∈ Rt×dh denotes the hidden embedding of t logical variables after the l-th

(self-attention) block in the r-th recurrent step; blockl denotes the l-th Transformer block

in the model; layer norm denotes layer normalization; · denotes matrix multiplication,

Wout ∈ Rdh×c is the weight of the output layer; and X(r,l) ∈ [0, 1]t×c denotes the NN

output with the hidden embeddingH(r,l).

Each blockl is defined on weights W (l)
K ,W

(l)
Q ,W

(l)
V ,W

(l)
P ∈ Rdh×dh (we describe a

single head case for simplicity) and a Multi-Layer Perceptron MLPl with output size dh.

K(r,l) = layer norm(H(r,l)) ·W (l)
K Q(r,l) = layer norm(H(r,l)) ·W (l)

Q

V(r,l) = layer norm(H(r,l)) ·W (l)
V A(r,l) = softmax(

Q(r,l)(K(r,l))T√
dh

)

V∗ = (A(r,l) ·V(r,l)) ·W (l)
P +H(r,l)

blockl(H
(r,l)) = MLPl(layer norm(V∗)) + V∗

Here,H(r,l),K(r,l),Q(r,l),V(r,l),V∗ ∈ Rt×dh and A(r,l) ∈ [0, 1]t×t.

Figure 5.1 shows a multi-layer Transformer encoder architecture (a) and the Recurrent

Transformer architecture in our work (b), where every dotted box denotes a self-attention

block. An output layer consists of a layer normalization, a linear layer, and a softmax

activation function. In (b), all output layers share the same parameters, while every self-

attention block has its own parameters.

For logical variable Xi and its domain Di = {1, . . . , ci} where ci ≤ c, the scalar X(r,l)
i,j

(i.e., element i, j of matrix X(r,l)) is interpreted as the probability of atom Xi = j for

j ∈ {1, . . . , ci}.

Example 10 (Recurrent Transformer for Visual Sudoku) Figure 5.2 shows how a Re-

current Transformer is used to solve the Visual Sudoku problem from (Wang et al., 2019).

Here, a Sudoku board is represented by 9 × 9 = 81 MNIST digit images where empty
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Figure 5.1: (a) Transformer Encoder. (b) Recurrent Transformer.

Figure 5.2: Recurrent Transformer for Visual Sudoku Problem.

cells are represented by images of digit 0. The Recurrent Transformer takes as an input

the sequence 〈cell1, . . . , cell81〉 of logical variables, and outputs the probability distribu-

tion over atoms celli = v for i ∈ {1, . . . , 81}, v ∈ {1, . . . , 9}. The given information for

each logical variable celli is the MNIST digit image in the i-th cell. Within the Recurrent
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Transformer, the token, position, and hidden embeddings Etok,Epos,H
(r,l) are in R81×128,

and the outputX(r,l) is in R81×9.

Discussion about Recurrence in Transformers. Adding recurrence to standard Trans-

former is not a new idea, but its application to CSP is novel. Other implementations of

recurrence in Transformers (Dehghani et al., 2019; Hao et al., 2019) largely follow the

traditional training and inference procedure, where causal attention encourages the model

to focus on the next token to be generated. In contrast, we use an encoder-only model

and force the Transformer to update all unknown variables at every recurrence, which en-

courages it to learn a convergent reasoning algorithm while considering the global picture

to generate a solution incrementally in any order. We find that with this framework, the

Transformer solves the CSP problems incrementally, gradually predicting more unknown

variables after it is confident in others. Since Universal Transformers (Dehghani et al.,

2019) produce outputs sequentially, they are forced to predict output variables in an arbi-

trary fixed order, only attending to previous sequence elements, which may not be suitable

for reasoning about many CSPs. We remove masked attention during training and infer-

ence, and instead allow for attention to every other input variable. With our design, during

inference time, an arbitrary number of recurrences can be used (different number from the

training time), which can further boost performance. Furthermore, instead of computing

a single loss on the final output as in Universal Transformer, we accumulate loss for each

output from every attention block at every recurrent step, which yields better performance,

as shown in Section 5.4.3.

5.3 Training Objective

Consider a labeled data instance 〈t, l〉 where t is t input tokens (that will be turned

into the token and position embeddings Etok, Epos) and l ∈ {na, 1, . . . , c}t is a label for

t, where na denotes unknown label. Let X(r,l) ∈ Rt×c be the NN output with input t at
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recurrent step r ∈ {1, . . . , R} and block l ∈ {1, . . . , L}. The cross-entropy loss Lcross is

defined as follows, where li denotes element i in l.

Lcross(X(r,l), l) = −
∑

i∈{1,...,t}, j∈{1,...,c}, li=j

log(X
(r,l)
i,j ).

For example, in ungrounded Visual Sudoku, t is a list of t = 81 MNIST images and

l ∈ {na, 1, . . . , 9}81 is the “ungrounded” solution for the Sudoku puzzle where the label

for all given digits is na. The cross-entropy loss on NN output X(r,l) ∈ R81×9 depends

only on empty cell predictions. In other words, no supervision for given digits is provided

during training.

The baseline loss Lbase is the sum of Lcross over NN output X(r,l) from all recurrent

steps and blocks.

Lbase =
∑

r∈{1,...,R}, l∈{1,...,L}

Lcross(X(r,l), l).

Note that we apply cross-entropy loss to the NN outputs from all recurrent steps and all

layers instead of from the very last one. We find that this makes the Recurrent Transformer

converge faster.

5.4 Evaluation

We use LxRyHz to denote our Recurrent Transformer with L = x self-attention blocks,

R = y recurrent steps, and z self-attention heads. If omitted, the number of heads z is 4

and the embedding size dh is 128.

5.4.1 Textual and Visual Sudoku

In this section, we apply Recurrent Transformers to solve Sudoku problem, where a

board can be either textual or visual.
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Sudoku Datasets

For textual Sudoku, we use the SATNet dataset from (Wang et al., 2019) and the RRN

dataset from (Palm et al., 2018). The difference is that RRN dataset is much harder and

bigger (with 17-34 given digits in each puzzle and 180k/18k training/test data) than the

SATNet dataset (with 31-42 given digits and 9k/1k training/test data). Each labeled data

instance in textual Sudoku is 〈t, l〉 where t ∈ {0, . . . , 9}81 denotes a Sudoku puzzle (0

represents an empty cell) and l ∈ {1, . . . , 9}81 is the solution to the puzzle. For Visual

Sudoku, we use the ungrounded SATNet-V dataset from (Topan et al., 2021). SATNet-V

was created based on the SATNet dataset where (i) each textual input in {0, . . . , 9} in the

training (or testing resp.) split is replaced with a randomly-selected MNIST image in the

MNIST training (or testing resp.) dataset, and (ii) the label for each given digit is na, i.e.,

unknown label that cannot be used to help training. In addition to SATNet-V, we created

a new ungrounded dataset, RRN-V, following the same procedure based on RRN dataset.

For faster evaluation on RRN-V dataset, we randomly sampled 9k/1k training/test data and

denoted it by “RRN-V (9k/1k)”.

Baselines and our Model for Sudoku

We take RRN and SATNet as the baselines for textual Sudoku, and take RRN, SATNet, and

SATNet∗ (Topan et al., 2021) (which resolves the symbol grounding issue of SATNet by

clustering the input images) as the baselines for Visual Sudoku. As RRN was not designed

for Visual Sudoku, we applied the same convolutional neural network (CNN) from (Wang

et al., 2019) to turn each MNIST image into the initial number embedding of that cell in

RRN. For our method on both textual and Visual Sudoku, we apply Recurrent Transformer

as in Figure 5.2 where the only difference is that the token embedding layer is a linear em-

bedding layer for textual Sudoku and is the same CNN for Visual Sudoku. All evaluations
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of our model use 32 recurrence steps for training and 64 for evaluation, as is done in (Palm

et al., 2018).

Table 5.1: Whole Board Accuracy on Different Sudoku Datasets. RRN-hardest Consists
of a Copy of the RRN Training Set, While the Testing Set Consists of Only the Hardest
Puzzles with 17 Given Digits in the RRN Test Set. We Compare with 3 Baselines: RRN
(Palm et al., 2018), SATNet (Wang et al., 2019), And SATNet∗ (Topan et al., 2021).

Textual Sudoku Visual Sudoku (Ungrounded)

dataset SATNet RRN RRN-hardest SATNet-V RRN-V

#given 31-42 17-34 17-34 31-42 17-34

(#train/#test) (9k/1k) (180k/18k) (180k/1k) (9k/1k) (9k/1k)

Models #Param (text/visual) Accuracy on test data

RRN 201k / 692k 100% 98.9% 96.6% 0% 0%

SATNet 618k / 1049k 98.3% 6.1% 0% 0% 0%

SATNet∗ – / 1049k + 13M(InfoGAN) – – – 64.8% 0%

L1R32H4 (ours) 211k / 702k 100% 99.5% 96.7% 93.5% 75.6%

Table 5.1 shows that our method outperforms state-of-the-art neural network models

for both textual and Visual Sudoku in different difficulties. Note that among all methods,

only RRN requires prior knowledge about Sudoku rules (i.e., there is an edge in the graph

between every 2 nodes if their related cells are in the same row/column/box). Both RRN

and SATNet fail on the (ungrounded) SATNet-V dataset due to the symbol grounding issue.

While SATNet∗ could learn to solve Visual Sudoku with the ungrounded dataset, it requires

training an InfoGAN with 13M parameters to cluster the inputs. Unlike SATNet∗, our

model works out-of-the-box on Visual Sudoku without carefully adjusting the structure

and outperforms SATNet∗ by a large margin.

For textual Sudoku problem, Table 5.2 shows the number of parameters in our model

and where they come from. There are a total of 211,328 parameters in a L1R32H4 model

computed based on input vocabulary size (v), context size (t), number of classes (c), hidden

embedding size (dh), and the hidden layer size (dMLP ) of MLPl, which is of shape (dh,

dMLP , dh). For SATNet (Wang et al., 2019), the number of parameters is 618,000 total.
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Table 5.2: Parameter Values And Counts for L1R32H4 Model for Textual Sudoku

Operation Parameters Parameter Count

Token Embedding v × dh 10× 128 = 1280

Positional Embedding t× dh 81× 128 = 10, 368

Multi-Head Self-Attention 4(d2
h + dh) 4(1282 + 128)

(W (l)
K ,W

(l)
Q ,W

(l)
V ,W

(l)
P ) (the dh is for bias) = 66, 048

Layer normalization 3× 2dh 3× 2× 128 = 768

MLPl dhdMLP + dMLP 2× 128× 512 + 512

(dh, dMLP , dh) +dMLPdh + dh +128 = 131, 712

Output layerWout dh × c 128× 9 = 1, 152

This is (n + 1 + aux) ×m, where n is the number of input variables, aux is the number

of auxiliary variables, and m is the rank of the clause matrix. The RRN (Palm et al.,

2018) has a total of 201,194 parameters, which come from the row, column, and number

embeddings, and the three MLPs used for node updates, message passing, and producing

output probabilities.

Although the L1R32H4 model has already achieved the new state-of-the-art results,

we may further improve the accuracy by increasing the number L of attention blocks, the

numberH of heads, or the hidden embedding size dh, with a trade-off of bigger model size.

We will analyze the effects of these decision choices on smaller datasets in Section 5.4.3.

5.4.2 More Domains

16x16 Sudoku

We train our L1R32H8 model (dh = 256) on 16x16 textual Sudoku. We generate two

10k (9k/1k training/test split) datasets of difficulty “simple” with an average of 111 givens
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and “medium” with an average of 95 givens. With 64 recurrent steps during inference, we

achieved 99.9% accuracy on both test sets, meaning there is only one wrongly predicted

board solution. Due to the absence of a 16x16 Sudoku generator that can produce fewer

givens, we could not test on harder boards.

MNIST Mapping

The MNIST Mapping problem was proposed in (Chang et al., 2020) as a simple test for the

symbol grounding problem. It requires learning a bijection that maps an image of MNIST

digit to one of the 10 symbolic digits. (Chang et al., 2020) shows that SATNet is sensitive

to this task and often fails without delicate tuning. Our Recurrent Transformer achieves

99% accuracy.

Nonograms

Nonogram (https://en.wikipedia.org/wiki/Nonogram) is a game that consists of an initially

empty N × N grid representing a binary image, where each cell must take on a value

of 0 or 1. Each row and column have constraints that must be satisfied to complete the

image successfully. A constraint for a row/column is a list of numbers, where each num-

ber corresponds to contiguous blocks of cells for a row/column. We created two datasets

for 7x7 and 15x15 grids, each has a 9k/1k training/test split. We use the same Recurrent

Transformer model as in previous experiments. A sample N × N grid is input as a N2

long sequence, where each element is a concatenated representation of the row and column

constraints associated with the element. For example, for 15x15 grids, a given cell with

the column constraint [1,7,4] and row constraint [2,2,4,1] would have a corresponding se-

quence element of the concatenation of the two constraint vectors [0,0,1,7,4] and [0,2,2,4,1]

(assuming the maximum constraint length is 5). With this simple input encoding only, our

Recurrent Transformer L1R16H4 achieved 97.5% test accuracy on 7x7 grids and 78.3%
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Figure 5.3: (left) Running Average of the Test Accuracy for Every 10 Epochs of a Re-
current Transformer with Different L And R Trained on the Same 8k RRN Data. (right)
Test Accuracy as a Function of the Number T of Recurrences When Testing on Different
Difficulty Puzzles in RRN Dataset, Using the Same L1R32 Model Trained on 180k RRN
Data.

test accuracy on 15x15 grids.

5.4.3 Ablation Study

Effects of Blocks and Recurrences

To analyze the effects of blocks and recurrences, we trained six LxRy(H4) models with dif-

ferent numbers of self-attention blocks L and recurrences R on 8k/2k (training/test) RRN

dataset with Lbase. Figure 5.3 (left) compares the whole board accuracy of these models,

showing that more self-attention steps (equal to L × R) lead to higher accuracy. With the

same number of self-attention steps, when L is small (e.g., L ≤ 4), more parameters intro-

duced by a bigger L slightly increase the accuracy. On the other hand, adding recurrences is

essential, and the non-recurrent model L64R1 performs poorly compared to the Recurrent

Transformers.

The number of recurrences T during testing can be higher than R during training. In-

deed, Figure 5.3 (right) shows that when T ≤ 64, the more recurrent steps T is, the higher

accuracy is achieved with the same L1R32 model trained on 32 steps, and the improvement

is bigger for harder puzzles.
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Figure 5.4: (left) Heatmaps of the Learned 81x81 Attention Matrices in the L1R32 Recur-
rent Transformer with Varying Numbers of Heads. (right) Test Accuracy VS. Epochs for
These Models.

Effects and Visualization of Multi-Head Attention

Without prior knowledge of the Sudoku game, the Recurrent Transformer learns purely

from 〈puzzle, solution〉 pairs so that each cell should pay attention to all cells in the same

row, column, and 3× 3 box through the attention mechanism. We trained an L1R32 model

with 1 to 4 self-attention heads on the SATNet dataset with Lbase. Figure 5.4 (left) visu-

alizes the learned attention matrices – they correctly pay attention to each row, column,

and box, respectively. For example, the first row of the top-left attention matrix in Fig-

ure 5.4 (left) learns purely from data about the 9 atoms to pay attention in constraint (5.3)

where {i, . . . , j} = {1, . . . , 9} and d = 1. These attentions are clearly separated in dif-

ferent heads if the number of heads is greater or equal to 3 and would merge otherwise.

Figure 5.4 (right) compares the whole board accuracy of these models, showing that more

attention heads help faster convergence, and the accuracy may decrease if the number of
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attention heads is too small to capture different semantic meanings.

Effect of Positional Embedding

To evaluate the effect of positional embedding, we trained the L1R32 model without po-

sitional embedding on the SATNet dataset with Lbase, finding that removing positional

embedding decreases the test accuracy from 100% to 0%. This is because positional em-

bedding is essential for a CSP as it is the only source to differentiate logical variables (e.g.,

cell1, . . . , cell81) with the same given information (e.g., digit 2 in both cell 4 and cell 10 in

Figure 5.2).

Analyses on Symbol Grounding with Visual Sudoku

In Visual Sudoku, we observed similar effects of different model designs as in textual Su-

doku. In this section, we analyze how the symbol grounding issue is resolved in Recurrent

Transformer by applying the same L1R32 model on both RRN-V dataset and its grounded

version (i.e., the label for every given digit is provided instead of na). For each of the two

trained models, we evaluate their (i) whole board accuracy, (ii) solution accuracy where a

board is counted correct if the prediction on all non-given cells are correct (even when the

given digits are incorrectly classified), and (iii) givens cell accuracy, i.e., per-cell classifi-

cation accuracy of the given cells.

When trained on the grounded dataset, the L1R32 model quickly learns to classify

the givens in 1 epoch, as shown in Figure 5.5 (right). On the other hand, with the un-

grounded dataset, the L1R32 model starts to classify the givens correctly at around epoch

85. In Figure 5.5 (left) and (right), the solution accuracy and givens cell accuracy (with

the ungrounded dataset) increase around the same time, indicating that digit classification

is being jointly learned with solving. Interestingly, our model achieves 99.36% classifi-

cation (givens cell) accuracy without explicitly training for it. Furthermore, the solution
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Figure 5.5: (left) The Whole Board Accuracy And Solution Accuracy of the L1R32 Model
Trained on Grounded or Ungrounded RRN-V Dataset (9k/1k). (right) The Givens Cell
Accuracy of the Same Models.

accuracy (75.5%) is consistently higher than the whole board accuracy (74.8%) as shown

in Figure 5.5 (left), meaning that even when givens are not correctly classified, the solution

can still be attained. We attribute this to the fact that reasoning is on the latent space instead

of classifying and solving in two steps, as SATNet does.

Recurrent Transformer vs. Vanilla Transformer

There are two main decision choices in Recurrent Transformer: adding recurrence and

applying losses to all blocks at all recurrent steps. To justify our decision choices, we

compared 3 Transformer designs on the textual Sudoku problem under 3 settings. Fig-

ures 5.3, 5.4, and 5.5 show the experimental results on textual Sudoku on SATNet (9k/1k

for training/testing), Palm (9k/1k), and Palm (3k/1k) datasets where

• the black line denotes the vanilla Transformer L32R1 with 32 blocks and with the

cross-entropy loss applied to the final output;

• the yellow line denotes the Recurrent Transformer L1R32 with a single block, 32

recurrences, and with the cross-entropy loss applied to the last output;

• the red line denotes the Recurrent Transformer L1R32 with a single block, 32 recur-

rences, and with the cross-entropy loss applied to 32 outputs.
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Table 5.3: Whole-board
Test Accuracy on SATNet
(9k/1k)

Table 5.4: Whole-board
Test Accuracy on Palm
(9k/1k)

Table 5.5: Cell Test Accu-
racy on Palm (3k/1k)

We can see that

• (comparing black and yellow lines) adding recurrences allows the model to achieves

higher accuracy (especially for harder problems in Palm dataset) with a much fewer

parameters in the model (1 block vs. 32 blocks);

• (comparing yellow and red lines) applying losses to all blocks makes the Recur-

rent Transformer model more stable and achieve higher accuracy than the Recurrent

Transformer with a single loss;

• (comparing Figure 5.5 with the other 2 figures) the benefit of recurrence and losses

on all blocks is more when the number of data is less. Figure 5.5 compares the cell

accuracy under the above 3 settings when trained on only 3k Palm data. In this figure,

using recurrent blocks increases the converged cell accuracy from 17.7% to 46.3%,

and applying losses to all blocks further improves the cell accuracy to 76.5%, and it

has not converged.
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5.5 Cardinality Constraint

5.5.1 Injecting General Cardinality Constraints via STE

Although Recurrent Transformers can learn to solve CSPs purely from labeled data, we

could inject the known constraints to help Transformers learn with fewer labeled data. In

this section, we follow the idea from CL-STE and propose a lightweight constraint loss

method for a special family of constraints in CSP, namely the cardinality constraint that

restricts the number of atoms in a set that can hold at the same time.

While CL-STE has successfully injected discrete constraints into NN training, repre-

senting cardinality constraints in CNF is tedious. On the other hand, we notice that the

binarization function t(x) enables direct counting on discrete values. Under this observa-

tion, for the cardinality constraint

l ≤ |{Xi1 = v1, . . . ,Xik = vk}| ≤ u

we construct a vector x ∈ Rk of probabilities of the atoms in the given set such that xj (i.e.,

element j in x) is the probability of Xij = vj for j ∈ {1, . . . , k}, and design a constraint

loss as follows

L[l,u](x) = 1c(x)<l × (c(x)− l)2 + 1c(x)>u × (c(x)− u)2 (5.4)

where scalar c(x) =
∑

t(x) =
∑
j

t(xj), and 1condition is 1 if condition is true, 0 oth-

erwise. Similarly, constraint |{Xi1 = v1, . . . ,Xik = vk}| = n can be encoded in the

following loss.

L[n](x) = (c(x)− n)2. (5.5)

In constraint losses (5.4) and (5.5), c(x) is the number of 1s in the binarized vector

t(x), which corresponds to counting the number of true atoms in constraints (5.1) and
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(5.2). Note that binarization function t(x) enables the counting, but its gradient ∂t(x)
∂x

is

always 0 whenever differentiable, so minimizing (5.4) and (5.5) won’t work on updating

NN parameters.

As with CL-STE, we use the identity STE to replace the gradient ∂t(x)
∂x

with 1 so that

the gradient of each constraint loss to t(x) becomes the “straight-though estimator” of the

gradient to x. In this way, we can do counting on the NN output with meaningful gradients.

While CL-STE could also represent the constraint loss (5.5) for n = 1 (uniqueness and

existence of values), the size of the CNF representation could be huge.

Example 11 (Constraint Loss on Output) Cardinality constraint loss (5.5) can be used

to define the constraints in Sudoku problem

LSudoku(X(r,l)) =
∑

k∈{row,col,box}

∑
i∈{1,...,81}

L[1](X
k
i,:),

where X(r,l) ∈ R81×9 is the NN output; Xrow,Xcol,Xbox ∈ R81×9 are reshaped copies of

X(r,l) such that each row in them contains the predictions in the same row/column/box;

and Xk
i,: denotes row i of matrix Xk. Intuitively, LSudoku says that “exactly one digit in

{1, . . . , 9} can be predicted in the same row/column/box”. Note that, in CL-STE, the same

Sudoku constraints are represented by a CNF with 729 atoms and 8991 clauses, which

requires computation on a big matrix in {−1, 0, 1}8991×729.

Furthermore, since the values in vector x are not limited to probabilities in NN out-

puts, we can apply these cardinality constraint losses to an attention matrix, representing

additional constraints (not in the original CSP) that should be satisfied by the attention.

Example 12 (Constraint Loss on Attention) In Sudoku problem, an attention matrix

A(r,l) ∈ R81×81 is computed in the l-th block at the r-th recurrence where A(r,l)
i,j is a nor-

malized attention weight that can be interpreted as the percentage of attention from cell
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i to cell j. The cardinality constraint loss (5.5) can also be used to define the following

constraint loss

Lattention(A(r,l)) = L[81](x)

where x =
∑
j

(A
(r,l)
:,j �M:,j);M is the adjacency matrix in {0, 1}81×81 such that Mi,j is 1

iff cells i and j are in the same row, column, or box;� denotes element-wise multiplication.

Intuitively, the i-th element in x ∈ R81 denotes the probability of the i-th cell paying

attention to its adjacent cells. Minimizing Lattention(A(r,l)) makes all 81 cells pay attention

to their adjacent cells.

Similar to the baseline loss Lbase, which is the sum of Lcross over NN output X(r,l)

from all recurrent steps and blocks, the total constraint loss Lconstraint is also accumulated

over all NN outputs. The total loss with constraint loss is Ltotal = Lbase + Lconstraint.

The constraint loss for Sudoku problem is

Lconstraint =
∑

r∈{1,...,R}, l∈{1,...,L}

(
αLSudoku(X(r,l)) + βLattention(A(r,l))

)
,

where α, β are reals in [0, 1] that are hyper-parameters specified in the next section.

5.5.2 Effect of Combinations of Constraints

Applying Constraint Losses to Sudoku

To evaluate the effects of different logical constraint losses, we trained the L1R32 model on

9k/1k (training/test) RRN dataset and 9k/1k RRN-V dataset for 300 epochs till convergence

with and without constraint losses. Table 5.6 shows that the same Recurrent Transformer

model can further be improved if, in the total loss, we include Lattention and/or LSudoku on

each neural network output, where the accuracy is evaluated with 32 or 64 recurrent steps T

during testing. We also observe a better performance gain with LSudoku than with Lattention
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Table 5.6: Effect of Adding Constraint Losses Lattention (att) And LSudoku (sud) to the
Baseline LossLbase When Training the Same L1R32 Model on 9k RRN or RRN-V Training
Data.

Textual Sudoku Visual Sudoku

att sud T=32 T=64 T=32 T=64

– – 80.3% 81.9% 72.0% 75.6%

– X 80.1% 84.4% 74.4% 79.3%

X – 83.8% 86.3% 76.4% 79.1%

X X 83.3% 87.0% 79.9% 83.6%

Table 5.7: Effect of Adding Constraint Loss Lconstraint And x Thousand Unlabeled Data
(Denoted by xkU) When Training the Same L1R32 Model on 4k Labeled RRN or RRN-V
Training Data (Denoted by 4kL).

Data
Textual Sudoku Visual Sudoku

T=32 T=64 T=32 T=64

4kL 58.0% 62.0% 40.9% 44.0%

4kL + Lconstraint 65.4% 69.2% 47.5% 50.4%

4kL + 4kU + Lconstraint 65.8% 69.9% 57.2% 61.0%

4kL + 8kU + Lconstraint 70.7% 73.3% 60.8% 64.4%

because the baseline model (trained with Lbase only) already learns the attention matrices

well, as shown in Figure 5.4 in Section 5.4.3. Besides, when we use 64 recurrences during

testing (whereas trained with 32 recurrences), the same Recurrent Transformer model has

bigger improvements on the test accuracy when it is also trained with constraint losses.

Since constraint loss Lconstraint (accumulated by LSudoku and Lattention) doesn’t require

labels, we could use it for semi-supervised learning tasks. Table 5.7 shows that, with only

4k labeled data, adding Lconstraint increases the whole board accuracy of the same 1k test

data, which can further be improved by adding additional 4k and 8k unlabeled data along
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with Lconstraint.

In Table 5.7, we showed how constraint loss helps in a semi-supervised setting for

textual and visual Sudoku. To analyze the effect of constraint loss on more unlabeled data

instances, we continued the experiments for both textual and visual Sudoku and recorded

the running average of the test accuracy for every 10 epochs in Figures 5.6 and 5.7.

Figure 5.6: Effect of adding constraint loss Lconstraint and x thousand Unlabeled data
(denoted by xkU) when training the same L1R32 model on 4k Labeled RRN training data
(denoted by 4kL).

Figure 5.7: Effect of adding constraint loss Lconstraint and x thousand Unlabeled data
(denoted by xkU) when training the same L1R32 model on 4k Labeled RRN-V training
data (denoted by 4kL).

We set the batch size to around 64 in the experiments in Figure 5.6 and to around 128 in

the experiments in Figure 5.7. The batch sizes are slightly adjusted to have integer number

split on labeled and unlabeled data in each batch. To reduce the effect of hyper-parameter
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tuning on the weights of constraint losses, in all experiments, the weights 〈α, β〉 of the

constraint losses Lsudoku and Lattention are set to 〈1, 0〉, i.e., only the constraint loss Lsudoku

is used with fixed weight 1. We can see that

• adding constraint loss improves the baseline accuracy by a large margin when trained

with limited labeled data;

• with the help of constraint loss, adding more unlabeled data improves the accuracy

in the beginning but the improvement is getting smaller;

• if we don’t lower the weight for the constraint loss and keep increasing the number

of unlabeled data, adding unlabeled data may lower the accuracy at some point as

the signals (i.e., gradients) from constraint loss may overwrite the signals from the

labels.

Applying Constraint Losses to Shortest Path Problem

A shortest path problem can be viewed as a CSP where X = {node1, . . . , nodem, edge1,

. . . , edgen} denotes all m nodes and n edges in a graph; D = {D1, . . . ,Dm+n} and Di =

{FALSE, TRUE}; and C is the set of constraints specifying the two end nodes in the graph

and that “the selected edges form a path between the end nodes with minimum length”.

The goal is to find the solution of this CSP, which represents the solution of the shortest

path problem. Here, nodei = TRUE (or edgei = TRUE resp.) represents that node i (or

edge i resp.) is in the shortest path. Let n1, n2 ∈ {1, . . . ,m} denote the indices of the 2

end nodes. C contains constraints noden1 = TRUE and noden2 = TRUE , the following

constraint for end nodes i ∈ {n1, n2},

|{edgei1 = TRUE, . . . , edgeik = TRUE}| = 1 (5.6)
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and the following constraint for non-end nodes i ∈ {1, . . . ,m} \ {n1, n2} in the shortest

path (given from label),

|{edgei1 = TRUE, . . . , edgeik = TRUE}| = 2 (5.7)

where {edgei1, . . . , edgeik} are the edges connected to node i in the graph. The first con-

straint says that “each end node should connect to exactly 1 edge in the path” and the second

constraint says that “each non-end node in the path should connect to exactly 2 edges in

the path”.

Dataset. We use the shortest path dataset SP4 from (Xu et al., 2018) to illustrate our

method where each graph is a 4 × 4 grid with m = 16 nodes and n = 24 edges. SP4 has

1610 data instances and, as in (Xu et al., 2018), we split the dataset into 60%/20%/20%

training/test/validation examples. In addition, we created a more challenging dataset SP12

where each graph is a 12× 12 grid with m = 144 nodes and n = 264 edges. SP12 has 22k

data instances, split into 20k/1k/1k training/test/validation examples. In each problem, two

end nodes are randomly picked up, as well as n
3

edges are randomly removed to increase

the difficulty. A labeled data instance is 〈t, l〉 where t ∈ {0, 1}m+n such that ti = 1 denotes

“node i is a terminal node” when i ≤ m, and denotes “edge ‘i−m’ is not removed” when

i > m; and l ∈ {0, 1}n such that li = 1 denotes “edge i is in the shortest path.”

Figure 5.8: Recurrent Transformer for Shortest Path.
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Figure 5.8 shows how a Recurrent Transformer is used to solve the shortest path prob-

lem in a 4 × 4 grid with m = 16 nodes and n = 24 edges. The given information for

each logical variable nodei (i ∈ {1, . . . , 16}) is a single digit 1 or 0 denoting that node i

is an end node or not. The given information for edgei (i ∈ {1, . . . , 24}) is a single digit

2 or 3 denoting that the edge i is removed or not. Given a NN output X(r,l) ∈ R40×2 for

40 logical variables, we construct the vector v ∈ R24 such that vi = X
(r,l)
i+16,2, denoting the

probabilities of edgei = TRUE for i ∈ {1, . . . , 24}. Let l ∈ {0, 1}24 denote the label, i.e.,

li = 1 iff edge i is in the shortest path. The cross-entropy loss is defined on v and l.

For the optional constraint loss, letM be the matrix in {0, 1}16×24 such thatMi,j = 1 iff

node i is connected with edge j in the graph. Let c ∈ {0, 1, 2, 3, 4}16 beM · l. Intuitively,

ci denotes the number of edges in the shortest path containing node i, and ci > 0 means that

node i is in the shortest path. Then, constraints (5.6) and (5.7) can be encoded as follows

Lpath(X(r,l)) =
∑

i∈{n1,n2}

(
L[1](Mi,: � v)

)
+

∑
i∈{1,...,16}\{n1,n2}

(
1ci>0 × L[2](Mi,: � v)

)
,

where the non-zero values inMi,: � v ∈ R24 are the probabilities of edgej = TRUE for all

edge j that contains node i.

Table 5.8: Constraint Accuracy on SP4 Test Data for the Shortest Path Problem

Method Constraint accuracy

Path No removed edges Shortest path

MLP 28.3% 32.9% 23.0%

MLP + Semantic Loss (Xu et al., 2018) 69.9% – –

MLP + NeurASP (Yang et al., 2020) 96.6% 36.3% 33.2%

L1R32 (ours) 84.5% 100% 83.5%

L1R32 + Lpath (ours) 91.9% 100% 91.0%

Table 5.8 compares the constraint accuracy achieved by (i) the baseline Multi-Layer
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Perceptron (MLP) introduced in (Xu et al., 2018) for the shortest path problem, (ii) the

NeurASP method that encodes a path constraint to help train the MLP, (iii) our Recurrent

Transformer (L1R32), and (iv) the same Recurrent Transformer enhanced by the constraint

loss Lpath. The constraint accuracy are the percentage of the predictions that (i) form a

valid path between end nodes, or (ii) do not include removed edges, or (iii) form a short-

est path between end nodes. Table 5.8 shows that the Recurrent Transformer significantly

outperforms the baseline MLP. Besides, the constraint loss Lpath further improves the ac-

curacy of the same Recurrent Transformer for predicting a valid path (or a shortest path

resp.) from 84.5% (or 83.5%) to 91.9% (or 91.0%).

Furthermore, we applied the same L1R32 model to the more challenging SP12 dataset.

After 2,000 epochs of training, we achieved 72.3% accuracy when trained with cross-

entropy loss only and 76.0% when trained with both cross-entropy loss and constraint loss

Lpath.

5.5.3 Computation Size

The proposed cadinality constraint loss is different from the constraint loss in CL-STE

(Yang et al., 2022). We tried the original design of constraint loss in CL-STE but it com-

putes too slow due to the exponential size of CNF used to represent a cardinality con-

straint. Thus, we invented a new constraint loss for a general cardinality constraint based

on counting discrete values in either NN output or attention matrix, which, to the best of

our knowledge, is new to the field.

In Table 5.9, we applied the cross-entropy loss, the CL-STE loss, and the cardinality

constraint loss to train the same RRN (Palm et al., 2018) on SATNet textual Sudoku dataset

(Wang et al., 2019). The cross-entropy loss serves as the baseline loss and is used in all four

rows in Table 5.9 during training. Here, R is the number of recurrent steps and is 32 in the

RRN model; NumAtom is the number of Boolean atoms in Sudoku and is 81× 9 = 729;
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Table 5.9: Computation Size of Different Losses (R = 32, NumAtom = 729,
NumClause = 8991)

Loss Applied To Computation Size Time/Epoch

Cross Entropy all recurrent steps O(R×NumAtom) 120s

CL-STE first recurrent step O(1×NumAtom×NumClause) 211s

CL-STE all recurrent steps O(R×NumAtom×NumClause) 3796s

Cardinality (ours) all recurrent steps O(R×NumAtom) 122s

and NumClause is 8991 which is the number of clauses in the CNF for Sudoku. As we

can see, the proposed cardinality constraint loss has the same computation size as the cross-

entropy loss, thus almost doesn’t affect the training time. On the other hand, the constraint

loss in CL-STE computes much slower since the computation size is propositional to the

number of clauses in a CNF, whose size is exponential to represent a cardinality constraint.

In addition to the cross-entropy loss that is applied to the output from all recurrent steps,

if we only apply the CL-STE loss to the output from the first recurrent step as done in the

CL-STE paper, the training time per epoch is 211s. Note that batch size is not included in

the computation size for simplicity. All experiments are using a batch size of 16 except for

the third row (applying CL-STE loss to the outputs from all recurrent steps). If we apply

the CL-STE loss to all recurrent steps, we have to decrease the batch size by 8 times to fit

the GPU memory and the training time per epoch is increased to 3796s.
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Chapter 6

LLM AND ASP

While large language models (LLMs), such as GPT-3, appear to be robust and general,

their reasoning ability is not at a level to compete with the best models trained for specific

natural language reasoning problems (Nye et al., 2021; Valmeekam et al., 2022). In this

chapter, we observe that a large language model could serve as a highly effective few-shot

semantic parser that turns natural language sentences into a logical form that can be used

as input to answer set programs (Lifschitz, 2008a; Brewka et al., 2011b). The combination

leads to a robust and general system that works across multiple QA tasks without the need

to retrain for new tasks. It requires only a few examples to direct an LLM to tune to an

individual task, along with ASP knowledge modules that can be reused over multiple tasks.

We demonstrate that this method achieves state-of-the-art performance on several NLP

benchmarks, such as bAbI (Weston et al., 2016), StepGame (Shi et al., 2022), CLUTRR

(Sinha et al., 2019), and gSCAN (Ruis et al., 2020), and also handles robot planning tasks

that an LLM alone fails to solve.

6.1 Method: LLM+ASP

We call our framework LLM+ASP where LLM denotes a large pre-trained network such

as GPT-3, which we use as a semantic parser to generate input to the ASP reasoner. More

specifically, we assume data instances of the form 〈S, q, a〉, where S is a context story in

natural language, q is a natural language query associated with S, and a is the answer.

We use an LLM to convert a problem description (that is, context S and query q) into

atomic facts, which are inputted into the ASP solver, together with background knowledge

encoded as ASP rules. The output of the ASP solver is interpreted as the prediction to this
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Figure 6.1: The LLM+ASP Pipeline for the StepGame Dataset.

data instance. Figure 6.1 illustrates the inference flow in the context of StepGame. The

pipeline is simple but general enough to apply to various tasks without retraining; it only

requires replacing few-shot prompts to the LLM and the ASP background knowledge with

those appropriate for the new tasks.

Combining LLMs and ASP this way allows symbolic reasoning to be robust to varying

and raw textual input; the ASP knowledge modules are not affected by the various forms

of text input that express the same facts. Our method does not require training datasets.

Instead, a few examples that turn natural language sentences into atomic facts are sufficient

to build a semantic parser thanks to learned representations in LLMs. ASP knowledge

modules can be reused for different tasks.

6.1.1 Prompts for Fact Extraction

We use an LLM (i.e., GPT-3) to extract atomic facts from the story and query. Most

of the time, giving several examples yields accurate semantic parsing. The following is an
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example prompt for bAbI.

Please parse the following statements into facts. The available keywords are:

pickup, drop, and go.

Sentence: Max journeyed to the bathroom.

Semantic parse: go(Max, bathroom).

Sentence: Mary grabbed the football there.

Semantic parse: pickup(Mary, football).

...

We find that GPT-3 is highly tolerable to linguistic variability. For example, in StepGame,

GPT-3 can turn various sentences below into the same atomic fact top right("C","D").

C is to the top right of D.

C is to the right and above D at an angle of about 45 degrees.

C is at a 45 degree angle to D, in the upper righthand corner.

C is directly north east of D.

C is below D at 2 o’clock.

In the experiments to follow, we find that the following strategy works well for fact

extraction.

1. In general, we find that if the information in a story (or query) can be extracted

independently, parsing each sentence separately (using the same prompt multiple

times) typically works better than parsing the whole story.

2. There is certain commonsense knowledge that GPT-3 is not able to leverage from

the examples in the prompt. In this case, detailing the missing knowledge in the

prompt could work. For example, in StepGame, clock numbers are used to denote

cardinal directions, but GPT-3 couldn’t translate correctly even with a few examples
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in the prompt. It works after enumerating all cases (“12 denotes top, 1 and 2 denote

top right, 3 denotes right, . . . ”) in the prompt.

3. Semantic parsing tends to work better if we instruct GPT-3 to use a predicate name

that better reflects the intended meaning of the sentence. For example, “A is there and

B is at the 5 position of a clock face” is better to be turned into down right(B,A)

than top left(A,B) although, logically speaking, the relations are symmetric.

The complete set of prompts for semantic parsing is given in Section 6.5.

6.1.2 Knowledge Modules

Instead of constructing a minimal world model for each task in Python code (Nye et al.,

2021), we use ASP knowledge modules. While some knowledge could be lengthy to

be described in English, it could be concisely expressed in ASP. For example, the loca-

tion module contains rules for spatial reasoning in a 2D grid space and is used for bAbI,

StepGame, and gSCAN. Below is the main rule in the location module that computes the

location (Xa,Ya) of object A from the location (Xb,Yb) of object B by adding the

offsets (Dx,Dy) defined by the spatial relation R between A and B.

location(A, Xa, Ya) :- location(B, Xb, Yb), is(A, R, B), offset(R, Dx, Dy),

Xa=Xb+Dx, Ya=Yb+Dy.

The location module also includes 9 predefined offsets, e.g., offset(left,-1,0), that

can be used to model multi-hop spatial relations of objects or effects of a robot’s moving

in a 2D space. For example, queries in StepGame are about the spatial relation R of object

A to B. Using the location module, one can fix B’s location to be (0,0) and compute the

spatial relation R based on the location of A as follows.

location(B, 0, 0) :- query(A, B).

answer(R) :- query(A, B), location(A, X, Y), offset(R, Dx, Dy),
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Dx=-1: X<0; Dx=0: X=0; Dx=1: X>0;

Dy=-1: Y<0; Dy=0: Y=0; Dy=1: Y>0.

The second rule above contains six conditional literals among which Dx=-1:X<0 says

that “Dx must be -1 if X<0.” For example, if A’s location (X,Y) is (-3,0), then

(Dx,Dy) is (-1,0) and the answer R is left. Similar rules can also be applied to

bAbI task 17, which asks if A is R of B.

In the above rules, the relation R in, e.g., is(A,R,B), is a variable and can be substi-

tuted by any binary relation. Such high-order representation turns out to be quite general

and applicable to many tasks that query relation or its arguments.

Figure 6.2: The Knowledge Modules at the Bottom Are Used in Each Task on the Top.

Figure 6.2 shows the knowledge modules used in this paper, where DEC denotes the

Discrete Event Calculus axioms from (Mueller, 2006; Lee and Palla, 2012). In this sec-

tion, we explained the main rules in the location module. The complete ASP knowledge

modules are given in Section 6.6.

6.2 Evaluation

We apply the method in the previous section to four datasets and the Pick&Place do-

main. Recall that we do few-shot in-context learning, but do not use the training set in-

cluded in these datasets. We use the same pipeline as in Figure 6.1 with different prompts

and knowledge modules for each dataset.

Since this section evaluates 3 models of GPT-3, i.e., text-curie-001, text-davinci-002,

and text-davinci-003, we use GPT-3(c1)+ASP, GPT-3(d2)+ASP, and GPT-3(d3)+ASP to
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Table 6.1: Test Accuracy on 20 Tasks in bAbI Data
Task GPT-3(d3) GPT-3(d3) GPT-3(d3) STM(Le et al., 2020) QRN(Seo et al., 2017)

Few-Shot CoT +ASP (10k train) (10k train) (1k train)

1: Single supporting fact 98.4 97.3 100.0 100.0 ± 0.0 100.0 100.0

2: Two supporting facts 60.8 72.2 100.0 99.79 ± 0.23 100.0 99.3

3: Three supporting facts 39.6 54.1 100.0 97.87 ± 1.14 100.0 94.3

4: Two arg relations 60.4 72.7 100.0 100.0 ± 0.0 100.0 100.0

5: Three arg relations 88.2 89.1 99.8 99.43 ± 0.18 100.0 98.9

6: Yes/no questions 97.4 97.3 100.0 100.0 ± 0.0 100.0 99.1

7: Counting 90.6 88.6 100.0 99.19 ± 0.27 100.0 90.4

8: Lists/sets 96.2 97.1 100.0 99.88 ± 0.07 99.6 94.4

9 : Simple negation 98.4 98.2 100.0 100.0 ± 0.0 100.0 100.0

10: Indefinite knowledge 93.6 92.4 100.0 99.97 ± 0.06 100.0 100.0

11: Basic coreference 93.6 99.2 100.0 99.99 ± 0.03 100.0 100.0

12: Conjunction 88.6 88.8 100.0 99.96 ± 0.05 100.0 100.0

13: Compound coreference 98.4 97.3 100.0 99.99 ± 0.03 100.0 100.0

14: Time reasoning 78.0 91.5 100.0 99.84 ± 0.17 99.9 99.2

15: Basic deduction 57.0 95.0 100.0 100.0 ± 0.0 100.0 100.0

16: Basic induction 90.8 97.5 100.0 99.71 ± 0.15 100.0 47.0

17: Positional reasoning 66.0 70.8 100.0 98.82 ± 1.07 95.9 65.6

18: Size reasoning 89.8 97.1 100.0 99.73 ± 0.28 99.3 92.1

19: Path finding 21.0 28.7 100.0 97.94 ± 2.79 99.9 21.3

20: Agents motivations 100.0 100.0 100.0 100.0 ± 0.0 100.0 99.8

Average 80.34 86.18 99.99 99.85 99.70 90.1

denote our method LLM+ASP with a different model of GPT-3 respectively.

6.2.1 bAbI

The bAbI dataset (Weston et al., 2016) is a collection of 20 QA tasks that have been

widely applied to test various natural language reasoning problems, such as deduction,

path-finding, spatial reasoning, and counting. State-of-the-art models, such as self-attentive

associative-based two-memory model (STM) (Le et al., 2020) and Query-Reduction net-

works (QRN) (Seo et al., 2017) achieve close to 100% accuracy after training with 10k
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instances while QRN’s accuracy drops to 90% with 1k training instances.

We first designed two GPT-3 baselines, one with few shot prompts (containing a few

example questions and answers) and the other with Chain-of-Thought (CoT) prompts (Wei

et al., 2022), which state the relevant information to derive the answer.

We also apply LLM+ASP. For example, we use GPT-3 to turn “the kitchen is south of

the bathroom” into an atomic fact is(kitchen, southOf, bathroom) by giving

a few examples of the same kind. Regarding knowledge modules, Tasks 1–3, 6–9, 10–

14, and 19 are about events over time and use the DEC knowledge module. Tasks 4, 17,

and 19 require various domain knowledge modules such as location and action knowledge

modules. The remaining tasks do not require domain knowledge and rely only on simple

rules to extract answers from parsed facts.

Table 6.1.2 compares our method with the two GPT-3 baselines, as well as two state-

of-the-art methods on bAbI datasets, STM and QRN. Interestingly, the new GPT-3, text-

davinci-003 (denoted GPT-3 (d3)), with basic few-shot prompting achieves 80.34% accu-

racy, while CoT improves it to 86.18%. GPT-3(d3)+ASP achieves state-of-the-art perfor-

mance on bAbI with 99.99% average performance among all tasks, producing only two

answers that disagree with the labels in the dataset. It turns out that the two questions are

malformed since the answers are ambiguous, and our model’s answers can be considered

correct. The detailed examples are available in Section 6.4.1.

6.2.2 StepGame

Although bAbI has been extensively tested, it has several problems. Shi et al. (2022)

note data leakage between the train and the test sets where named entities are fixed and

only a small number of relations are used. Palm et al. (2018) point out that models do not

need multi-hop reasoning to solve the bAbI dataset. To address the issues, Shi et al. (2022)

propose the StepGame dataset. It is a contextual QA dataset in which the system is required
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to interpret a story S about spatial relationships among several entities and answers a query

q about the relative position of two of those entities, as illustrated in Figure 6.1. Unlike

the bAbI dataset, StepGame uses a large number of named entities, and requires multi-hop

reasoning up to as many as 10 reasoning steps.

In the basic form of the StepGame dataset, each story consists of k sentences that de-

scribe k spatial relationships between k + 1 entities in a chain-like shape. In this chapter,

we evaluate the StepGame dataset with noise, where the original chain is extended with

noise statements by branching out with new entities and relations.

Similarly to bAbI, we designed two GPT-3 baselines and applied our method to the

StepGame data set.

Table 6.2: Test Accuracy on the StepGame Test Dataset, Where (c1), (d2), and (d3) Denote
text-curie-001, text-davinci-002, and text-davinci-003 Models, Respectively

Method k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

RN 22.6 17.1 15.1 12.8 11.5 11.1 11.5 11.2 11.1 11.3

RRN 24.1 20.0 16.0 13.2 12.3 11.6 11.4 11.8 11.2 11.7

UT 45.1 28.4 17.4 14.1 13.5 12.7 12.1 11.4 11.4 11.7

STM 53.4 36.0 23.0 18.5 15.1 13.8 12.6 11.5 11.3 11.8

TPR-RNN 70.3 46.0 36.1 26.8 24.8 22.3 19.9 15.5 13.0 12.7

TP-MANN 85.8 60.3 50.2 37.5 31.3 28.5 26.5 23.7 22.5 21.5

SynSup 98.6 95.0 92.0 79.1 70.3 63.4 58.7 52.1 48.4 45.7

Few-Shot (d3) 55.0 37.0 25.0 30.0 32.0 29.0 21.0 22.0 34.0 31.0

CoT (d3) 61.0 45.0 30.0 35.0 35.0 27.0 22.0 24.0 23.0 25.0

GPT-3(c1)+ASP 44.7 38.8 40.5 58.8 62.4 57.4 56.2 58.0 56.5 54.1

GPT-3(d2)+ASP 92.6 89.9 89.1 93.8 92.9 91.6 91.2 90.4 89.0 88.3

For each k ∈ {1, . . . , 10}, the StepGame dataset with noise consists of 30,000 training

139



samples, 1000 validation samples, and 10,000 test samples. To save the API cost for GPT-

3, we only evaluated the two GPT-3 baselines on the first 100 test samples and evaluated

our method on the first 1,000 test samples for each k ∈ {1, . . . , 10}. Table 6.2 compares the

accuracy of our method with the two baselines of GPT-3 and the current methods, i.e. RN

(Santoro et al., 2017), RRN (Palm et al., 2018), UT (Dehghani et al., 2019), STM (Le et al.,

2020), TPR-RNN (Schlag and Schmidhuber, 2018), TP-MANN (Shi et al., 2022), and Syn-

Sup (with pre-training on the SPARTUN dataset) (Mirzaee and Kordjamshidi, 2022). Sur-

prisingly, the GPT-3 baselines could achieve accuracy comparable to other models (except

for SynSup) for large k values. CoT does not always help and decreases the accuracy with

big ks. This may be because there is a higher chance of making a mistake in a long chain

of thought. GPT-3(d2)+ASP outperforms all state-of-the-art methods and the GPT-3 base-

lines by a large margin for k = 4, . . . , 10. Although SynSup achieves a higher accuracy

for k = 1, 2, 3, this is misleading due to errors in the dataset. As we analyze below, about

10.7% labels in the data are wrong. The SynSup training makes the model learn to make

the same mistakes over the test dataset, which is why its performance looks better than

ours.

The modular design of LLM+ASP enables us to analyze the reasons behind its wrong

predictions. We collected the first 100 data instances for each k ∈ {1, . . . , 10} and manu-

ally analyzed the predictions on them.

Among 1000 predictions of GPT-3(d2)+ASP, 108 of them disagree with the dataset

labels, and we found that 107 of those have errors in the labels. For example, given the

story and question “J and Y are horizontal and J is to the right of Y. What is the relation of

the agent Y with the agent J?”, the label in the dataset is “right” while the correct relation

should be “left”.1 Recall that our method is interpretable, so we could easily identify the

1The remaining disagreeing case is due to text-davinci-002’s mistake. For the sentence, “if E is the center

of a clock face, H is located between 2 and 3.” text-davinci-002 turns it into “right(H, E)” whereas text-
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source of errors.

6.2.3 CLUTRR

CLUTRR (Sinha et al., 2019) is a contextual QA dataset that requires inferring family

relationships from a story. Sentences in CLUTRR are generated using 6k template narra-

tives written by Amazon Mechanical Turk crowd-workers, and thus are more realistic and

complex compared to those in bAbI and StepGame.

CLUTRR consists of two subtasks, systematic generalization that evaluates stories con-

taining unseen combinations of logical rules (Minervini et al., 2020; Bergen et al., 2021)

and robust reasoning that evaluates stories with noisy descriptions (Tian et al., 2021). Since

we use ASP for logical reasoning, which easily works for any combination of logical rules,

we focus on the robust reasoning task.

Table 6.3: Test Accuracy on 4 Categories in CLUTRR 1.0 and CLUTRR 1.3 Datasets

Method CLUTTR clean supp. irre. disc.

RN 1.0 49 68 50 45

MAC 1.0 63 65 56 40

Bi-att 1.0 58 67 51 57

GSM 1.0 68.5 48.6 62.9 52.8

GPT-3(d3)+ASP 1.0 68.5 82.8 74.8 67.4

GPT-3(d3)+ASP 1.3 97.0 84.0 92.0 90.0

Table 6.3 compares our method with RN (Santoro et al., 2017), MAC (Hudson and

Manning, 2018), BiLSTM-attention (Sinha et al., 2019), and GSM (Tian et al., 2021) on

the original CLUTRR dataset, namely CLUTRR 1.0, in four categories of data instances:

davinci-003 turns it into “top-right(H, E)” correctly. To save API cost for GPT-3, we did not re-run the whole

experiments with text-davinci-003.
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clean, supporting, irrelevant, and disconnected. Except for our method, all other models

are trained on the corresponding category of CLUTRR training data. Although our method

achieves similar or higher accuracies in all categories, they are still much lower than we

expected.

We found that such low accuracy is due to the errors in CLUTRR dataset, originating

mostly from errors in the template narratives or the generated family graphs that violate

common sense. The authors of CLUTRR recently published CLUTRR 1.3 codes to par-

tially resolve this issue. 2 With the new code, we created a new dataset, namely CLUTRR

1.3, consisting of 400 data instances with 100 for each of the four categories. The last

row in Table 6.3 shows that our method actually performs well on realistic sentences in

CLUTRR. Indeed, with our method (text-davinci-003) on CLUTRR 1.3 dataset, 363 out

of 400 predictions are correct, 16 are still wrong due to data mistakes (e.g., the label says

“Maryann has an uncle Bruno” while the noise sentence added to the story is “Maryann

told her son Bruno to give the dog a bath”), and 21 are wrong due to GPT-3’s parsing mis-

takes (e.g., GPT-3 turned the sentence “Watt and Celestine asked their mother, if they could

go play in the pool” into mother("Watt", "Celestine"). Since the sentences in

CLUTRR 1.3 are more realistic than those of bAbI and StepGame, GPT-3 makes more

mistakes even after reasonable efforts of prompt engineering. More details on data errors

and GPT-3 errors are available in Section 6.4.2 and Section 6.3.

Table 6.4: Test Accuracy on CLUTRR-S Dataset

Method clean supp. irre. disc.

DeepProbLog 100 100 100 94

GPT-3(d2)+ASP 100 100 97 97

GPT-3(d3)+ASP 100 100 100 100

2https://github.com/facebookresearch/clutrr/tree/develop
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We also evaluated our method on a simpler and cleaner variant of the CLUTRR data

set, namely CLUTRR-S, that was used as a benchmark problem for a state-of-the-art neuro-

symbolic approach DeepProbLog (Manhaeve et al., 2021). Table 6.4 compares the accu-

racy of our method and DeepProbLog in all 4 categories of test data. GPT-3(d3)+ASP

achieves 100% accuracy, outperforming DeepProbLog without the need for training.

Remark: Due to the modular structure, our method could serve as a data set validation

tool to detect errors in a dataset. We detected 107 wrong data instances in the first 1000

data in StepGame and 16 wrong data instances in the 400 data in CLUTRR 1.3.

6.2.4 gSCAN

The gSCAN dataset (Ruis et al., 2020) poses a task in which an agent must execute

action sequences to achieve a goal (specified by a command in a natural language sentence)

in a grid-based visual navigation environment. The dataset consists of two tasks, and we

evaluate our method on the data splits from the compositional generalization task. There is

one shared training set, one test set (split A) randomly sampled from the same distribution

of the training set, and seven test sets (splits B to H) with only held-out data instances (i.e.,

not appearing in the training set) in different ways.

In the gSCAN dataset, each data instance is a tuple 〈G, q, a〉 where G is the grid con-

figuration (in JSON format) describing the size of the gird, the location and direction of

the agent, and the location and features of each object in the grid; q is a query (e.g., “pull a

yellow small cylinder hesitantly”); and a is the answer in the form of a sequence of actions

(e.g., “turn right, walk, stay, pull, stay, pull, stay”). For each data instance, we (i) use a

Python script to extract atomic facts (e.g., pos(agent,(2,3))) from the grid config-

uration G; (ii) extract atomic facts from query q into atomic facts (e.g., query(pull),

queryDesc(yellow), while(hesitantly)) using GPT-3; and (iii) predict the se-

quence of actions for this query using ASP.
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Table 6.5: Test Accuracy on the gSCAN Dataset

Method A B C D

GECA 87.60 34.92 78.77 0.00

DualSys 74.7 81.3 78.1 0.01

Vilbert+CMA 99.95 99.90 99.25 0.00

GPT-3(c1)+ASP 98.30 100 100 100

GPT-3(d2)+ASP 100 100 100 100

Method E F G H

GECA 33.19 85.99 0.00 11.83

DualSys 53.6 76.2 0.0 21.8

Vilbert+CMA 99.02 99.98 0.00 22.16

GPT-3(c1)+ASP 100 100 100 100

GPT-3(d2)+ASP 100 100 100 100

Table 6.5 compares the accuracy of our method and the state-of-the-art methods, i.e.,

GECA (Ruis et al., 2020), DualSys (Nye et al., 2021) and Vilbert+CMA (Qiu et al., 2021),

on the gSCAN test dataset in eight splits. To save API cost for GPT-3, we only evaluated the

first 1000 data instances of each split. With text-davinci-002, our method achieves 100%

accuracy. With text-curie-001, our accuracy is slightly lower, making 17 errors in split A.

The errors are of two kinds. The language model fails to extract adverbs in the correct

format for 11 data instances (e.g., GPT-3 responded queryDesc(while spinning)

instead of while(spinning)) and didn’t ground the last word in a query for 6 data

instances (e.g., for query walk to a small square, GPT-3 missed an atomic fact

queryDesc(square)). Once the parsed results are correct, ASP does not make a mis-

take in producing plans.
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6.2.5 Robot Planning

Recently, there has been increasing interest in using large language models to find a

sequence of robot executable actions to achieve a high-level goal in natural languages, such

as SayCan (Ahn et al., 2022) and Innermonologue (Huang et al., 2022). On the other hand,

actions found by the LLM are “loosely” connected and do not consider the intermediate

state changes while the actions are executed.

Figure 6.3: The LLM+ASP Pipeline for Pick&Place

We build the work on SayCan’s open source virtual tabletop environment 3, where a

robot is asked to achieve a goal, e.g., “stack the blocks” on a table with colored blocks and

bowls. We observe that the successful plans demonstrated by SayCan are limited to simple

one-step look-ahead plans that do not consider intermediate state changes.

We randomly sampled 40 data instances of the form 〈Si, Sg, L〉 in the Pick&Place do-

main with 4 to 7 blocks and 3 to 7 bowls, possibly stacked together and with 3 to 10 steps

of pick and place actions required by the robot to change the initial state Si to the goal

3https://github.com/google-research/google-research/tree/master/saycan
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state Sg. Here, the label L is the set of instructions to achieve the goals (e.g., “1. Move the

violet block onto the blue block. 2...”). Among 40 data instances, 20 data instances contain

only blocks that can be placed on the table while 20 data instances contain both blocks and

bowls and assume all blocks must be on the bowls.

The baseline for this dataset follows the method in SayCan’s open-source virtual table-

top environment, where GPT-3 is used as the large language model to directly find the

sequence of actions from Si to Sg. However, the baseline fails to find successful plans for

all 40 randomly sampled data instances. This result confirms the claim by (Valmeekam

et al., 2022) that large language models are not suitable as planners.

We also applied our method to this task. We let GPT-3 turn the states Si and Sg into

atomic facts of the form on(A,B, 0) and on(A,B), respectively. Then, an ASP program for

the Pick&Place domain is used to find an optimal plan. We found that while GPT-3 has only

0% accuracy in predicting the whole plan, it has 100% accuracy in fact extraction under

the provided format. When we apply symbolic reasoning to these extracted atomic facts

with an ASP program, we could achieve 100% accuracy on the predicted plans. Figure 6.4

visualizes a simple plan predicted by LLM+ASP.

Table 6.6: Test Accuracy on the Pick&Place Dataset. (d3) Denotes the text-davinci-003
Model.

Method Blocks Blocks+Bowls

GPT-3(d3) 0 0

GPT-3(d3)+ASP 100 100

6.2.6 Findings

The following summarizes the findings of the experimental evaluation.

• Our experiments confirm that LLMs like GPT-3 are still not good at multi-step rea-
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Figure 6.4: A Simple Plan Predicted by LLM+ASP in the Pick&Place Domain.

soning despite various prompts we tried. Chain-of-Thought is less likely to improve

accuracy when a long chain of thought is required.

• On the other hand, LLMs are surprisingly good at turning a variety of expressions

into a “canonical form” of information extraction. This in turn allows ASP knowl-

edge modules to be isolated from linguistic variability in the input.

• Even for generating simple atomic facts, larger models tend to perform better. For ex-

ample, in StepGame and gSCAN, text-curie-001 performs significantly worse com-

pared to text-davinci-002 (Tables 6.2 and 6.5).

• The total amount of knowledge that needs to be encoded for all of the above datasets

is not too large. This is in part due to the fact that GPT-3 “normalized” various forms
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of input sentences for ASP to process and that knowledge modules could be reused

across different datasets.

• The modular design of our approach makes it possible to locate the root cause of each

failed prediction in the training data and improve upon it. There are three sources

of errors: semantic parsing in LLMs, symbolic constraints, and the dataset itself,

and we can resolve the first two issues by improving the prompts and updating the

constraints, respectively.

• Our framework could serve as a few-shot dataset justifier and corrector. Among all

predictions by our method that do not align with the labels, almost all of them (with

only a few exceptions discussed in the paper) are due to errors in the dataset.

6.3 GPT-3 Errors in Semantic Parsing

In this section, we group and record the errors in the GPT-3 responses in tables where

each row records a 3-tuple 〈 dataset, sentence(s), GPT-3 response 〉. In this section, we list

the following.

• all 21 errors for the CLUTRR 1.3 dataset with text-davinci-003;

• the single mistake in the first 100 data instances for every k ∈ {1, . . . , 10} in the

StepGame dataset with text-davinci-002.

6.3.1 Argument Misorder

A common mistake in the GPT-3 response is that the relation and arguments for an

atom are correctly extracted, but the order of the arguments is incorrect. Such mistakes can

be greatly alleviated by proper few-shot prompting where the orders of arguments in the

example target atoms follow their orders in the stories.

148



CLUTRR 1.3
[Erasmus] bought to dress for his father

[Joeseph]
father(“Joeseph”, “Erasmus”)

CLUTRR 1.3
[Baldwin] bought to dress for his father

[Sidney]
father(“Sidney”, “Baldwin”)

CLUTRR 1.3 [Elizabeth] is the uncle of [Leopold]. uncle(“Elizabeth”, “Leopold”)

There are only 3 errors in CLUTRR 1.3 due to argument misorder. The first 2 mistakes

are indeed due to their missing periods at the end of the sentences – if we simply add the

periods back, their GPT-3 responses would become correct.

6.3.2 Wrong Relation

Sometimes the arguments are correct, but the relations extracted by GPT-3 are incorrect

or cannot be recognized by the ASP program.

CLUTRR 1.3
[Leila] and [Enoch] have been married

for 35 years.
married(“Leila”, “Enoch”)

CLUTRR 1.3

[Lottie] and her grandsons [Clinton]

and [Enoch] picked berries from the

garden.

grandsons( “Lottie”, “Clinton”)

grandsons( “Lottie”, “Enoch”)

CLUTRR 1.3
[Felix] loved going to the store with his

mom [Christena].
mom(“Felix”, “Christena”)

CLUTRR 1.3

[Archibald] asked his father, [Abra-

ham], to watch over his two sons, [Jus-

tus] and [Merle], for the weekend.

sons( “Archibald”, “Justus”,

“Merle”)

StepGame
If E is the center of a clock face, H is

located between 2 and 3.
right(“H”, “E”)

These kinds of mistake may be resolved by restricting the space of possible relations.

For example, the mistakes in the first four rows can be resolved by simply adding the

sentence “Use spouse(‘Person’, ‘Person’) if two persons are couples.” in the prompt.
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6.3.3 Ambiguious or Incorrect Co-reference

CLUTRR 1.3
[Katherine] was eating lunch with his

son [Daniel] and his wife [Adelle].

son(“Katherine”, “Daniel”)

wife(“Daniel”, “Adelle”)

CLUTRR 1.3
[Sylvester] and his son [Rollie] went to

his mother [Ottilia]’s home

son(“Sylvester”, “Rollie”)

mother(“Rollie”, “Ottilia”)

CLUTRR 1.3

[Elsie] and [Lewis] did the Father

daughter dance at the recital and his

wife [Dollie] was so happy she cried

father(“Lewis”, “Dollie”)

wife(“Lewis”, “Dollie”)

6.3.4 Anonymous Argument

CLUTRR 1.3
[Abe] is proud of his daughter’s son.

His name is [Johnie].
son(“Johnie”, “Abe”)

CLUTRR 1.3

[Watt] and [Celestine] asked their

mother, if they could go play in the

pool.

mother(“Watt”, “Celestine”)

CLUTRR 1.3
[Davie] told his wife [Kitty] to pick up

their daughter.

wife(“Davie”, “Kitty”) daugh-

ter(“Davie”, “Kitty”)

CLUTRR 1.3

[Ethyl] just got married to her now hus-

band, and in the process she got herself

a daughter-in-law named [Henry].

husband(“Ethyl”, “Michael”).

daughter in law( “Ethyl”,

“Henry”)

CLUTRR 1.3

[Barnett] and [Manie] asked their

mother, if they could go play in the

pool.

mother(“Barnett”, “Manie”)

CLUTRR 1.3
[Santiago] told his wife [Octavia] to

pick up their daughter.

wife(“Santiago”, “Octavia”)

daughter(“Santiago”, “Oc-

tavia”)
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6.3.5 Missed to Generate Some Atoms

CLUTRR 1.3

[Elizabeth] bought to dress for his fa-

ther [Leopold] [Orson] took his wife

[Abbie] out for dinner.

father(“Leopold”, “Orson”)

CLUTRR 1.3

[Asa] felt lonely when his wife [Mag-

dalena] was gone to see her mother

[Josiephine].

wife(“Asa”, “Magdalena”)

CLUTRR 1.3

[Warner]’s father, [Johnny], and grand-

father, [Bryant], went hiking during the

first weekend of spring.

male(“Johnny”) male(“Bryant”)

CLUTRR 1.3
[Hollie] and [Rosanna], the happy cou-

ple, just got married last week.
–

CLUTRR 1.3

[Violet] took her brother [Travis] to

the park, but left her sister [Serena] at

home.

brother(“Violet”, “Travis”)

6.4 Dataset Errors

This section enumerates the errors in the datasets we found.

6.4.1 bAbI

In task 5, the dataset has two errors with regard to the labels.

Error #1. In the following example, the answer is ambiguous since Bill gives Mary both

the football and the apple.

CONTEXT:

Mary journeyed to the kitchen.

Mary went to the bedroom.

Mary moved to the bathroom.
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Mary grabbed the football there.

Mary moved to the garden.

Mary dropped the football.

Fred went back to the kitchen.

Jeff went back to the office.

Jeff went to the bathroom.

Bill took the apple there.

Mary picked up the milk there.

Mary picked up the football there.

Bill went back to the kitchen.

Bill went back to the hallway.

Fred journeyed to the office.

Bill discarded the apple.

Mary journeyed to the kitchen.

Fred journeyed to the garden.

Mary went to the hallway.

Mary gave the football to Bill.

Bill passed the football to Mary.

Bill took the apple there.

Bill gave the apple to Mary.

Jeff travelled to the kitchen.

QUERY:

What did Bill give to Mary?

PREDICTION:

apple
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Answer:

football

Error #2. In the following example, the answer is ambiguous since Fred gives Bill both

the milk and the apple.

CONTEXT:

Mary journeyed to the bathroom.

Mary moved to the hallway.

Mary went to the kitchen.

Bill went back to the bedroom.

Bill grabbed the apple there.

Fred went back to the garden.

Mary went to the garden.

Fred took the milk there.

Jeff moved to the hallway.

Bill dropped the apple there.

Fred handed the milk to Mary.

Mary handed the milk to Fred.

Fred went back to the bedroom.

Fred passed the milk to Bill.

Fred took the apple there.

Fred gave the apple to Bill.

Jeff went to the kitchen.

Bill dropped the milk.

QUERY:

What did Fred give to Bill?
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PREDICTION:

apple

Answer:

milk

6.4.2 CLUTRR

We detected 16 data errors in the CLUTRR 1.3 dataset using our method. These errors

can be grouped into the following 4 categories.

• 5 data instances are due to incorrect relation graphs. For example, one relation graph

contains the main part “A-son-B-daughter-C-aunt-D” and a noise (supporting) rela-

tion “B-spouse-D”. However, if B and D are couples, then C should have mother D

instead of aunt D.

• 9 data instances have a correct relation graph (e.g., A-son-B-grandmother-C-brother-

D with a noise supporting relation B-mother-A) but the noise relation is translated

into a sentence with a wrong person name (e.g., “D has mother A” instead of “B has

mother A”).

• 1 data instance has a correct relation graph and story, but has a wrong label (i.e., the

label should be mother in law instead of mother).

• 1 data instance has a correct relation graph and story, but the query cannot be an-

swered due to the ambiguity of a sentence. It uses “A has grandsons B and C” to

represent brother(B, C), while B and C may have different parents.
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6.5 Prompts for Semantic Parsing

Below, we present the details of the general knowledge of the prompts that we sum-

marized and applied in this work, followed by some examples. The full prompts for bAbI,

StepGame, CLUTRR, gSCAN, and Pick&Place are available in our lab Github repository

https://github.com/azreasoners/LLM-ASP.

1. If the information in a story (or query) can be extracted independently, parsing each

sentence separately (using the same prompt multiple times) typically works better

than parsing the whole story. Since people usually cache all GPT-3 responses to

save cost by avoiding duplicated GPT-3 requests for the same prompt, parsing each

sentence separately also yields better usage of cached responses. Below are some

examples.

• In most bAbI tasks (except for tasks 11 and 13), the sentences in a story (includ-

ing the query sentence) are independent of each other. We parse each sentence

separately using GPT-3.

• In the stepGame dataset, each sentence in a story describes the spatial relation

between 2 objects. There are 4 sentences in a story when k = 1 and about 20

sentences when k = 10. If we ask GPT-3 to extract all the atomic facts from

the whole story, it always misses some atoms or predicts wrong atoms. Since

every sentence is independent of each other as shown in Figure 6.1, we use the

following (truncated) prompt multiple times for each data instance where each

time [INPUT] is replaced with one sentence in the story or the query. This

yields a much higher accuracy as in Section 6.2.3.

Please parse each sentence into a fact. If the sentence is describing

clock-wise information, then 12 denotes top, 1 and 2 denote
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top_right, 3 denotes right, ... If the sentence is describing

cardinal directions, then north denotes top, ...

Sentence: What is the relation of the agent X to the agent K?

Semantic Parse: query("X", "K").

Sentence: H is positioned in the front right corner of M.

Semantic Parse: top_right("H", "M").

...

Sentence: [INPUT]

Semantic Parse:

However, if some sentences in a story are dependent, splitting them may lead to

unexpected results in the GPT-3 response. Below are some examples.

• In bAbI task #11 and #13, a story may contain the two consecutive sentences

“Mary went back to the bathroom. After that she went to the bedroom.” There is

a dependency on the sentences to understand that “she” in the second sentence

refers to “Mary” in the first. For this reason, task #11 stories are parsed as a

whole. This is similar for task #13.

• In the CLUTRR dataset, a story may contain sentences with coreferences like

“Shirley enjoys playing cards with her brother. His name is Henry.” where the

latter sentence depends on the former one, and a family relation can be correctly

extracted only with both sentences. Thus for CLUTRR datasets (i.e., CLUTRR

1.0, CLUTRR 1.3, and CLUTRR-S), we extract the family relations and gender

relations from the whole story.

2. There is certain commonsense knowledge that GPT-3 is not aware of, and describing
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the missing knowledge in the prompt works better than adding examples only. This

happens when GPT-3 cannot generalize such knowledge well with a few examples.

• For example, in StepGame dataset, clock numbers are used to denote cardinal

directions, e.g., “H is below J at 4 o’clock” means “H is on the bottom-right of

J”. Such knowledge in the dataset is not well captured by GPT-3 and enumer-

ating examples in the prompt doesn’t work well. On the other hand, describing

such knowledge at the beginning of the prompt increases the accuracy by a large

margin.

6.6 ASP Knowledge Modules

The full ASP programs of all knowledge modules (i.e., Discrete Event Calculus Axioms

Module, Action Module, Location Module, and Family Module) as well as all domain-

specific ASP rules for each task are available in our lab Github repository https://github.

com/azreasoners/LLM-ASP. Table 6.7 summarizes the knowledge modules used for each

of the tasks.

157



Task DEC Axioms Action Location Family Relation

1: Single supporting fact X X

2: Two supporting facts X X

3: Three supporting facts X X

4: Two arg relations X

5: Three arg relations X

6: Yes/no questions X X

7: Counting X X

8: Lists/sets X X

9 : Simple negation X X

10: Indefinite knowledge X X

11: Basic coreference X X

12: Conjunction X X

13: Compound coreference X X

14: Time reasoning X X

15: Basic deduction

16: Basic induction

17: Positional reasoning X

18: Size reasoning

19: Path finding X X X

20: Agents motivations

StepGame X

gSCAN X X

CLUTRR X

Pick&Place X X

Table 6.7: Knowledge Modules Used for Each of the Tasks. Note That DEC Axioms,
Action, and Location Modules are Used in at Least Two Datasets.
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Chapter 7

CONCLUSION

Despite the unprecedented success of deep neural networks, there is a growing aware-

ness of their limitations: deep neural networks usually are data hungry; have difficulty in

injecting knowledge or solving tasks that require complex reasoning; and lack transparency,

explainability, and justification for predictions.

This dissertation presents three neuro-symbolic AI methods, namely NeurASP, CL-

STE, and GPT3-ASP, to address the above issues by combining the strengths of deep neural

networks and symbolic AI approaches. It also presents a Recurrent Transformer that ex-

tends Transformers with the power for multi-step reasoning through a recurrent architecture

and a full attention.

This dissertation shows that neural network inference and training can benefit from ex-

plicit knowledge or constraints. For example, Chapter 3 shows that perception mistakes

can be corrected by explicit constraints in ASP. Chapters 3, 4, and 5 show that a neural net-

work can be trained better with less data or label with the gradients from a “semantic loss”

expressed by either a formal probabilistic language or a regularization function. Chapter 6

shows that a large language model can serve as a highly effective few-shot semantic parser

that turns natural language sentences into atomic facts – this information itself is not that

important but can be utilized in symbolic computation to answer various questions.

This dissertation also shows that multi-step reasoning can be simulated in a neural

network structure or simply appended as a symbolic computation layer to the output of

neural networks. Chapter 5 presents a Recurrent Transformer that is capable of doing multi-

step reasoning through recurrent calls to the same transformer blocks. Chapter 6 presents

a dual-process neuro-symbolic reasoning system LLM+ASP, which achieves state-of-the-
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art performance on several NLP benchmarks, including bAbI, StepGame, CLUTRR, and

gSCAN, and also handles robot planning tasks that an LLM alone fails to solve.

Here, we summarize the major contributions of the dissertation and some directions for

future work.

7.1 Summary of Contributions

We summarize the contributions of this dissertation as follows:

• We designed and developed the framework NeurASP. NeurASP is a neuro-

symbolic framework that combines neural networks, probability, and ASP. We de-

signed the syntax and semantics of NeurASP. We designed both the inference and

learning algorithms, proved the correctness of the gradient computation (which is

based on stable models and probabilities), and implemented a prototype system.

We showed that, from ASP’s perspective, NeurASP inherits the expressivity of

ASP and extends its application domain to vector spaces and probabilistic reason-

ing. From neural networks’ perspective, NeurASP provides a convenient way to

represent structured knowledge used for inference and training. We designed experi-

ments and showed that NeurASP can improve the neural network’s perception result

by applying reasoning over perceived objects and also can help neural network learn

better by compensating the small size data with knowledge and constraints.

• We designed and implemented a discrete semantic loss CL-STE. CL-STE is

a regularization method that systematically encodes logical constraints in proposi-

tional logic as a loss function in neural network learning. We proved the properties

of this semantic loss as well as the properties of its gradients. We implemented CL-

STE in PyTorch, conducted experiments, and demonstrated that minimizing this loss

function via STE enforces the logical constraints in neural network learning so that

neural networks learn from the explicit constraints. We also showed that leveraging
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GPUs and batch training, CL-STE scales significantly better on a big range of exist-

ing benchmark problems compared to state-of-the-art neuro-symbolic methods that

use heavy symbolic computation as a blackbox for computing gradients.

• We designed and implemented Recurrent Transformer. We designed and im-

plemented Recurrent Transformer, a encoder-based neural network struc-

ture that extends Transformers with recurrence and full-attention. We applied this

new model to challenging problems such as ungrounded visual Sudoku, showing

that Recurrent Transformer is a viable approach to learning to solve CSPs,

with clear advantages over state-of-the-art methods, such as RRN and SATNet. We

also designed an efficient semantic loss for cardinality constraints and showed how

to inject discrete logical constraints into Recurrent Transformer training to

achieve sample-efficient learning and semi-supervised learning for CSPs.

• We designed and developed a neuro-symbolic dual-system LLM+ASP. We com-

bined ASP with a large language model, i.e., GPT-3, that learned distributed rep-

resentations. More specifically, we let GPT-3 serve as a general-purpose few-shot

semantic parser that can convert linguistically variable natural language sentences

into atomic facts and let ASP provide interpretable and explainable reasoning on the

parsed results. We implemented this dual-system, evaluated the system to challeng-

ing question answering datasets, and achieved new state-of-the-art accuracy. We also

showed that the knowledge modules are reusable in similar domains and adapting to

a new domain does not require massive training.

• We studied the relations among extensions of ASP. In addition to the above contri-

butions, we studied the relationships among some logic languages that are extensions

of ASP. We proved reductions from higher-level languages to low-level ones, which

helps us to have a better theoretical understanding of these languages and, in some
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cases, yields more efficient solvers for the former using the solvers of the latter.

7.2 Future Directions

A few interesting directions for future work include:

• Design and implement more efficient computation for NeurASP. The current

design of NeurASP has poor efficiency and the bottleneck lies in the probability

computation for a data instance, which requires enumerating all stable models. There

are many potential ways to resolve this issue. One way is to embed ASP (or possibly

a fragment of ASP) directly in neural networks as a regularization function. Our work

CL-STE is along this direction while the expressivity of ASP is not kept. It remains

an open question to explore whether we can accelerate the computation in NeurASP

by encoding ASP in CL-STE. Another way is to have an approximate inference

by sampling a small amount of intended models instead of enumerating all of them.

The obstacle is that the existing probabilistic sampling methods, e.g., MCASP (Lee

and Wang, 2018) which uses a uniform sampler XORRO (Gebser et al., 2016) for

answer set programs, still take much time to sample an intended model. A more

scalable sampling method needs to be designed. The third way is to compile an

ASP program into a circuit, such as SDD (Kisa et al., 2014) or d-DNNF (Darwiche,

2004), both of which are able to complete weighted model counting in polytime. The

weighted model counting results are then used to compute probabilities and gradients

for NeurASP.

• Apply Neuro-Symbolic learning to larger-scale domains. Although the CL-STE

method has been shown to scale significantly better than existing neuro-symbolic

methods that use heavy symbolic computation as a blackbox for computing gradi-

ents, the scale of the current experiments is still limited compared to the problems
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targeted in deep learning community. We plan to apply CL-STE to larger-scale prob-

lems with domain knowledge available, starting from benchmark problems such as

CIFAR-10 and CIFAR-100 datasets to which existing neuro-symbolic method (Roy-

chowdhury et al., 2021) has been applied using the prior knowledge about the re-

lationships among classes, e.g., only bird and plane can fly. In addition to logic

puzzles and vision problems, we will apply CL-STE to more kinds of tasks such

as Word Algebra Problems as in DeepProbLog (Manhaeve et al., 2018), which

applies the knowledge about addition, subtraction, and product, and regression tasks

such as temperature prediction where the constraints on the highest or lowest temper-

ature as well as the change of temperature are summarized based on historical data

and applied during training and inference.

• Improve the Generalizability of Recurrent Transformer. One big limitation of

Recurrent Transformer is its generalizability. Since the window size in the

current design of Recurrent Transformer is fixed and equal to the number of

logical variables, one cannot transfer a trained model (e.g., on 9x9 Sudoku) to a new

domain with different number of variables (e.g., 16x16 Sudoku). Dedicated research

on more flexible window design (e.g., a sliding window on logical variables with a

position embedding on variable indices) is necessary.

• Rule generation using large language models. Large language model (LLMs)

keep rich information in vector space. In chapter 6, we showed that a large language

model (LLM) could serve as a highly effective few-shot semantic parser that turns

natural language sentences into atomic facts. It would be more interesting if we

can generate rules using LLMs such as GPT-3. Similar to LLM+ASP, the prompts

would play an essential role. LLM-based rule generation basically extracts a prompt-

specified subset of the knowledge hidden in LLMs, and present the knowledge in an
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expressive logic programming rule form.
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works”, in “Proceedings of the 2015th International Conference on Cognitive Computa-
tion: Integrating Neural and Symbolic Approaches-Volume 1583”, pp. 52–60 (CEUR-
WS. org, 2015).

170



Tang, W., G. Hua and L. Wang, “How to train a compact binary neural network with high
accuracy?”, in “Thirty-First AAAI conference on artificial intelligence”, (2017).

Tian, J., Y. Li, W. Chen, H. Hao and Y. Jin, “A generative-symbolic model for logical
reasoning in nlu”, in “Is Neuro-Symbolic SOTA still a myth for Natural Language Infer-
ence? The first workshop”, (2021).

Topan, S., D. Rolnick and X. Si, “Techniques for symbol grounding with SATNet”, Ad-
vances in Neural Information Processing Systems 34 (2021).

Tsamoura, E., T. Hospedales and L. Michael, “Neural-symbolic integration: A composi-
tional perspective”, in “Proceedings of the AAAI Conference on Artificial Intelligence”,
pp. 5051–5060 (2021).

Valmeekam, K., A. Olmo, S. Sreedharan and S. Kambhampati, “Large language models
still can’t plan (a benchmark for LLMs on planning and reasoning about change)”, in
“NeurIPS 2022 Foundation Models for Decision Making Workshop”, (2022), URL https:
//openreview.net/forum?id=wUU-7XTL5XO.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and
I. Polosukhin, “Attention is all you need”, arXiv preprint arXiv:1706.03762 (2017).

Verreet, V., V. Derkinderen, P. Z. Dos Martires and L. De Raedt, “Inference and learning
with model uncertainty in probabilistic logic programs”, in “Proceedings of the AAAI
Conference on Artificial Intelligence”, vol. 36, pp. 10060–10069 (2022).

Wang, P.-W., P. L. Donti, B. Wilder and Z. Kolter, “SATNet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver”, in “Proceedings of the 35th
International Conference on Machine Learning (ICML)”, (2019).

Wei, J., X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H. Chi, Q. V. Le and
D. Zhou, “Chain of thought prompting elicits reasoning in large language models”, in
“Advances in Neural Information Processing Systems”, edited by A. H. Oh, A. Agarwal,
D. Belgrave and K. Cho (2022), URL https://openreview.net/forum?id= VjQlMeSB J.

Weston, J., A. Bordes, S. Chopra and T. Mikolov, “Towards ai-complete question answer-
ing: A set of prerequisite toy tasks”, in “4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings”, edited by Y. Bengio and Y. LeCun (2016), URL http://arxiv.org/abs/1502.
05698.

Winters, T., G. Marra, R. Manhaeve and L. De Raedt, “Deepstochlog: Neural stochastic
logic programming”, arXiv preprint arXiv:2106.12574 (2021).

Xu, J., Z. Zhang, T. Friedman, Y. Liang and G. Van den Broeck, “A semantic loss func-
tion for deep learning with symbolic knowledge”, in “Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML)”, (2018), URL http://starai.cs.ucla.edu/
papers/XuICML18.pdf.

171



Yang, Z., A. Ishay and J. Lee, “NeurASP: Embracing neural networks into answer set pro-
gramming”, in “Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI)”, pp. 1755–1762 (2020).

Yang, Z., A. Ishay and J. Lee, “Learning to solve constraint satisfaction problems with
recurrent transformer”, in “The Eleventh International Conference on Learning Repre-
sentations”, (2023), URL https://openreview.net/forum?id=udNhDCr2KQe.

Yang, Z., J. Lee and C. Park, “Injecting logical constraints into neural networks via straight-
through estimators”, in “International Conference on Machine Learning”, pp. 25096–
25122 (PMLR, 2022).

Yi, K., C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba and J. B. Tenenbaum, “CLEVRER:
Collision events for video representation and reasoning”, in “ICLR”, (2019).

Yin, P., J. Lyu, S. Zhang, S. Osher, Y. Qi and J. Xin, “Understanding straight-through
estimator in training activation quantized neural nets”, in “International Conference on
Learning Representations”, (2019).

Zhang, J., Y. Zhao, M. Saleh and P. Liu, “Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization”, in “International Conference on Machine
Learning”, pp. 11328–11339 (PMLR, 2020).

Zhang, Y., X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi and L. Song, “Efficient prob-
abilistic logic reasoning with graph neural networks”, in “International Conference on
Learning Representations”, (2019).

Zhou, D., N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet,
Q. Le and E. Chi, “Least-to-most prompting enables complex reasoning in large lan-
guage models”, arXiv preprint arXiv:2205.10625 (2022).

172


